Complex TNF-α B cell epitope MAP vaccine alleviates murine ulcerative colitis

  • Authors:
    • Yan Sun
    • Wensheng Pan
    • Jun Zhang
    • Ying Cui
    • Huiju Wang
    • Guoqing Ru
    • Legao Chen
  • View Affiliations

  • Published online on: July 8, 2019     https://doi.org/10.3892/ijmm.2019.4271
  • Pages: 1106-1116
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

The present study aimed to develop a tumor necrosis factor‑α (TNF‑α) B‑cell epitope/IL‑1β helper T lymphocyte epitope complex MAP vaccine for the alleviation of ulcerative colitis (UC) in mice. The B cell epitopes of murine TNF‑α (mTNF‑α) were predicted in silico and coupled with the universal interleukin 1β (IL‑1β) helper T‑cell epitope peptide VQGEESNDK to synthesize the eight‑branched MAP vaccine. Then, the immunological effects of the MAP vaccine were assessed in vitro and in vivo, as well as its impacts on DAI index, serum DAO levels, colon tissue tight junction protein amounts, ultrastructural changes, and MPO activity in BALB/c mice with UC. The amino acids LTLRSSSQNSSDKPV at positions 78‑92 of mTNF‑α may constitute the dominant B cell epitope. Based on this finding, an eight‑branched peptide structure, the TNF‑α B‑cell epitope/IL‑1β helper T‑cell epitope complex MAP vaccine, was synthesized. Indirect ELISA confirmed that MAP had a high affinity with commercialized mTNF‑α antibodies. Meanwhile, MAP induced high specific antibody titers in vivo, reduced the DAI score, serum MPO activity, colorectal lymph node colony count, ultrastructural injuries, colon tissue histological index score and MPO activity in UC mice, while increasing the expression levels of occludin, claudin1 and ZO1 in colon tissues. The synthetic complex MAP vaccine has good antigenicity and immunogenicity, and can alleviate UC in mouse models.

References

1 

Park JH and Brentjens RJ: Adoptive immunotherapy for B-cell malignancies with autologous chimeric antigen receptor modified tumor targeted T cells. Discov Med. 9:277–288. 2010.PubMed/NCBI

2 

Castro FV, Al-Muftah M, Mulryan K, Jiang HR, Drijfhout JW, Ali S, Rutkowski AJ, Kalaitsidou M, Gilham DE and Stern PL: Regulation of autologous immunity to the mouse 5T4 oncofoetal antigen: Implications for immunotherapy. Cancer Immunol Immunother. 61:1005–1018. 2012. View Article : Google Scholar

3 

Steeland S, Libert C and Vandenbroucke RE: A new venue of TNF targeting. Int J Mol Sci. 19:E14422018. View Article : Google Scholar : PubMed/NCBI

4 

Kopylov U, Ben-Horin S, Zmora O, Eliakim R and Katz LH: Anti-tumor necrosis factor and postoperative complications in Crohn's disease: Systematic review and meta-analysis. Inflamm Bowel Dis. 18:2404–2413. 2012. View Article : Google Scholar : PubMed/NCBI

5 

Kawalec P, Mikrut A, Wisniewska N and Pilc A: Tumor necrosis factor-alpha antibodies (infliximab, adalimumab and certolizumab) in Crohn's disease: Systematic review and meta-analysis. Arch Med Sci. 9:765–779. 2013. View Article : Google Scholar : PubMed/NCBI

6 

Marchioni RM and Lichtenstein GR: Tumor necrosis factor-alpha inhibitor therapy and fetal risk: A systematic literature review. World J Gastroenterol. 19:2591–2602. 2013. View Article : Google Scholar : PubMed/NCBI

7 

Laharie D, Bourreille A, Branche J, Allez M, Bouhnik Y, Filippi J, Zerbib F, Savoye G, Nachury M, Moreau J, et al: Ciclosporin versus infliximab in patients with severe ulcerative colitis refractory to intravenous steroids: A parallel, open-label randomised controlled trial. Lancet. 380:1909–1915. 2012. View Article : Google Scholar : PubMed/NCBI

8 

Singh S, Heien HC, Sangaralingham LR, Schilz SR, Kappelman MD, Shah ND and Loftus EV: Comparative effectiveness and safety of infliximab and adalimumab in patients with ulcerative colitis. Aliment Pharmacol Ther. 43:994–1003. 2016. View Article : Google Scholar : PubMed/NCBI

9 

Marehbian J, Arrighi HM, Hass S, Tian H and Sandborn WJ: Adverse events associated with common therapy regimens for moderate-to-severe Crohn's disease. Am J Gastroenterol. 104:2524–2533. 2009. View Article : Google Scholar : PubMed/NCBI

10 

No authors listed. Can super-antibody drugs be tamed? Nature. 440:855–856. 2006. View Article : Google Scholar : PubMed/NCBI

11 

Rolinski J and Hus I: Breaking immunotolerance of tumors: A new perspective for dendritic cell therapy. J Immunotoxicol. 11:311–318. 2014. View Article : Google Scholar : PubMed/NCBI

12 

Park KB, Lim BK, Ye MB, Chung SY and Nam JH: A peptide vaccine based on a B-cell epitope on the VP1 protein of entero-virus 70 induces a strong antibody response. Acta Virol. 56:337–342. 2012. View Article : Google Scholar

13 

Paul S and Piontkivska H: Frequent associations between CTL and T-Helper epitopes in HIV-1 genomes and implications for multi-epitope vaccine designs. BMC Microbiol. 10:2122010. View Article : Google Scholar : PubMed/NCBI

14 

Haro I and Gómara MJ: Design of synthetic peptidic constructs for the vaccine development against viral infections. Curr Protein Pept Sci. 5:425–433. 2004. View Article : Google Scholar : PubMed/NCBI

15 

Zhang J, Yang J, Fan D, Tao H, Wang H and Yu T: Peptide FLNPDVLDI of heparanase is a novel HLA-A2-restricted CTL epitope and elicits potent immunological antitumor effects in vitro with an 8-branched design. Oncol Rep. 29:1955–1961. 2013. View Article : Google Scholar : PubMed/NCBI

16 

Zhang J, Yang J, Cai Y, Jin N, Wang H and Yu T: Multiple antigenic polypeptide composed of heparanase Bcell epitopes shrinks human hepatocellular carcinoma in mice. Oncol Rep. 33:1248–1256. 2015. View Article : Google Scholar

17 

Jia JY, Zhou HZ and Tang J: The study of mouse TNF-α functional domain and its neutralizing antibody binding site. Prog Biochem Biophys. 36:424–430. 2009.In Chinese.

18 

Boraschi D and Tagliabue A: Interleukin-1 and interleukin-1 fragments as vaccine adjuvants. Methods. 19:108–113. 1999. View Article : Google Scholar : PubMed/NCBI

19 

Chakraborty S, Chakravorty R, Ahmed M, Rahman A, Waise TM, Hassan F, Rahman M and Shamsuzzaman S: A computational approach for identification of epitopes in dengue virus envelope protein: A step towards designing a universal dengue vaccine targeting endemic regions. In Silico Biol. 10:235–246. 2010.PubMed/NCBI

20 

Yang XS, Wang HQ, Yuan QF, Xie Y, Yao ZB, Ye XZ, Wu JM and Zhou AG: Directly synthesize Aβ_(1-15) peptide vaccine by fmoc solid-phase peptide synthesis and study its immune activity. J Sun Yat Sen Uni. 27:121–125. 2006.In Chinese.

21 

Wang J, Sun N, Zhou C, Zhou X, Lu J, Wang C and Che H: Food proteins from different allergen families sensitize balb/c mice to family-specific immune responses. J Immunotoxicol. 11:172–179. 2014. View Article : Google Scholar

22 

Zhang J, Cui Y, Wu Y, Wang H and Ke J: Prediction and identification of Bcell epitopes for tumor necrosis factoralpha. Mol Med Rep. 16:3439–3444. 2017. View Article : Google Scholar : PubMed/NCBI

23 

Murano M, Maemura K, Hirata I, Toshina K, Nishikawa T, Hamamoto N, Sasaki S, Saitoh O and Katsu K: Therapeutic effect of intracolonically administered nuclear factor kappa B (p65) antisense oligonucleotide on mouse dextran sulphate sodium (DSS)-induced colitis. Clin Exp Immunol. 120:51–58. 2000. View Article : Google Scholar : PubMed/NCBI

24 

Kihara N, de la Fuente SG, Fujino K, Takahashi T, Pappas TN and Mantyh CR: Vanilloid receptor-1 containing primary sensory neurones mediate dextran sulphate sodium induced colitis in rats. Gut. 52:713–719. 2003. View Article : Google Scholar : PubMed/NCBI

25 

Sureshbabu A, Syed MA, Boddupalli CS, Dhodapkar MV, Homer RJ, Minoo P and Bhandari V: Conditional overexpres-sion of TGFβ1 promotes pulmonary inflammation, apoptosis and mortality via TGFβR2 in the developing mouse lung. Respir Res. 16:42015. View Article : Google Scholar

26 

Thorlund K, Druyts E, Mills EJ, Fedorak RN and Marshall JK: Adalimumab versus infliximab for the treatment of moderate to severe ulcerative colitis in adult patients naive to anti-TNF therapy: An indirect treatment comparison meta-analysis. J Crohns Colitis. 8:571–581. 2014. View Article : Google Scholar : PubMed/NCBI

27 

Fausel R and Afzali A: Biologics in the management of ulcerative colitis-comparative safety and efficacy of TNF-alpha antagonists. Ther Clin Risk Manag. 11:63–73. 2015.

28 

Ben-Horin S, Kopylov U and Chowers Y: Optimizing anti-TNF treatments in inflammatory bowel disease. Autoimmun Rev. 13:24–30. 2014. View Article : Google Scholar

29 

de Mattos BR, Garcia MP, Nogueira JB, Paiatto LN, Albuquerque CG, Souza CL, Fernandes LG, Tamashiro WM and Simioni PU: Inflammatory bowel disease: An overview of immune mechanisms and biological treatments. Mediators Inflamm. 2015:4930122015. View Article : Google Scholar : PubMed/NCBI

30 

Chey WY: Infliximab for patients with refractory ulcerative colitis. Inflamm Bowel Dis. 7(Suppl 1): S30–S33. 2001. View Article : Google Scholar : PubMed/NCBI

31 

Okamoto R and Watanabe M: Functional relevance of intestinal epithelial cells in inflammatory bowel disease. Nihon Rinsho Meneki Gakkai Kaishi. 39:522–527. 2016. View Article : Google Scholar

32 

Landy J, Ronde E, English N, Clark SK, Hart AL, Knight SC, Ciclitira PJ and Al-Hassi HO: Tight junctions in inflammatory bowel diseases and inflammatory bowel disease associated colorectal cancer. World J Gastroenterol. 22:3117–3126. 2016. View Article : Google Scholar : PubMed/NCBI

33 

Noth R, Stüber E, Häsler R, Nikolaus S, Kühbacher T, Hampe J, Bewig B, Schreiber S and Arlt A: Anti-TNF-α antibodies improve intestinal barrier function in Crohn's disease. J Crohns Colitis. 6:464–469. 2012. View Article : Google Scholar : PubMed/NCBI

34 

Di Sabatino A, Pender SL, Jackson CL, Prothero JD, Gordon JN, Picariello L, Rovedatti L, Docena G, Monteleone G, Rampton DS, et al: Functional modulation of Crohn's disease myofibroblasts by anti-tumor necrosis factor antibodies. Gastroenterology. 133:137–149. 2007. View Article : Google Scholar : PubMed/NCBI

35 

Li JY, Lu Y and Fu XB: The significance of changes in diamine oxidase activity in intestinal injury after trauma. Chin Crit Care Med. 12:482–484. 2000.In Chinese.

36 

Leaphart CL and Tepas JJ III: The gut is a motor of organ system dysfunction. Surgery. 141:563–569. 2007. View Article : Google Scholar : PubMed/NCBI

37 

Ivanov AI, Nusrat A and Parkos CA: Endocytosis of the apical junctional complex: Mechanisms and possible roles in regulation of epithelial barriers. Bioessays. 27:356–365. 2005. View Article : Google Scholar : PubMed/NCBI

38 

Furuse M, Hirase T, Itoh M, Nagafuchi A, Yonemura S and Tsukita S: Occludin: A novel integral membrane protein local-izing at tight junctions. J Cell Biol. 123:1777–1788. 1993. View Article : Google Scholar : PubMed/NCBI

39 

Wardill HR, Bowen JM, Al-Dasooqi N, Sultani M, Bateman E, Stansborough R, Shirren J and Gibson RJ: Irinotecan disrupts tight junction proteins within the gut: Implications for chemotherapy-induced gut toxicity. Cancer Biol Ther. 15:236–244. 2014. View Article : Google Scholar

40 

Shang HX, Wang AQ, Bao CH, Wu HG, Chen WF, Wu LY, Ji R, Zhao JM and Shi Y: Moxibustion combined with acupuncture increases tight junction protein expression in Crohn's disease patients. World J Gastroenterol. 21:4986–4996. 2015. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

September 2019
Volume 44 Issue 3

Print ISSN: 1107-3756
Online ISSN:1791-244X

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Sun, Y., Pan, W., Zhang, J., Cui, Y., Wang, H., Ru, G., & Chen, L. (2019). Complex TNF-α B cell epitope MAP vaccine alleviates murine ulcerative colitis. International Journal of Molecular Medicine, 44, 1106-1116. https://doi.org/10.3892/ijmm.2019.4271
MLA
Sun, Y., Pan, W., Zhang, J., Cui, Y., Wang, H., Ru, G., Chen, L."Complex TNF-α B cell epitope MAP vaccine alleviates murine ulcerative colitis". International Journal of Molecular Medicine 44.3 (2019): 1106-1116.
Chicago
Sun, Y., Pan, W., Zhang, J., Cui, Y., Wang, H., Ru, G., Chen, L."Complex TNF-α B cell epitope MAP vaccine alleviates murine ulcerative colitis". International Journal of Molecular Medicine 44, no. 3 (2019): 1106-1116. https://doi.org/10.3892/ijmm.2019.4271