Open Access

Circular RNA profile in liver tissue of EpCAM knockout mice

  • Authors:
    • Yanhong Yang
    • Shaomin Liu
    • Zili Lei
    • Guibin Chen
    • Li Huang
    • Fei Yang
    • Yuting Lei
    • Yanyan Liu
    • Lanxiang Yang
    • Wanwan Liu
    • Liangxue Lai
    • Jiao Guo
  • View Affiliations

  • Published online on: July 8, 2019     https://doi.org/10.3892/ijmm.2019.4270
  • Pages: 1063-1077
  • Copyright: © Yang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Epithelial cell adhesion molecule (EpCAM) is highly expressed during liver development and carcinogenesis, However, its functions and underlying mechanisms remain unclear. Clustered regularly interspaced short palindromic repeats (CRISPRs)/CRISPR‑associated protein 9 (Cas9) technology was used in the current study to establish EpCAM‑/‑ mice. The expression of EpCAM in the livers of the mice at embryonic day (E)18.5 and post‑natal day (P)0 was detected by immunofluorescence staining. The expression of genes associated with the development and glycogen metabolism was also assessed by reverse transcription‑quantitative PCR. Additionally, the liver tissue of the EpCAM‑/‑ and wild‑type mice was used for non‑coding RNA sequencing. The results of RNA sequencing revealed 11 up‑regulated and 12 downregulated circular RNAs (circRNAs). Kyoto Encyclopedia of Genes and Genomes analysis for resource genes determined that the top altered pathways included cell junctions, cell cycle, immune signaling and metabolism. This analysis was also utilized to predict the target association of the circRNA‑microRNA‑mRNA network. The comprehensive liver tissue circRNA expression profiles produced in the present study may help to elucidate the functions and mechanisms of EpCAM during liver development.

References

1 

Huang L, Yang Y, Yang F, Liu S, Zhu Z, Lei Z and Guo J: Functions of EpCAM in physiological processes and diseases (Review). Int J Mol Med. 42:1771–1785. 2018.PubMed/NCBI

2 

Lei Z, Maeda T, Tamura A, Nakamura T, Yamazaki Y, Shiratori H, Yashiro K, Tsukita S and Hamada H: EpCAM contributes to formation of functional tight junction in the intestinal epithelium by recruiting claudin proteins. Dev Biol. 371:136–145. 2012. View Article : Google Scholar : PubMed/NCBI

3 

Guerra E, Lattanzio R, La Sorda R, Dini F, Tiboni GM, Piantelli M and Alberti S: mTrop1/Epcam knockout mice develop congenital tufting enteropathy through dysregulation of intestinal E-cadherin/β-catenin. PLoS One. 7:pp. e493022012, View Article : Google Scholar

4 

Mueller JL, McGeough MD, Peña CA and Sivagnanam M: Functional consequences of EpCam mutation in mice and men. Am J Physiol Gastrointest Liver Physiol. 306:G278–G288. 2014. View Article : Google Scholar :

5 

Yousaf M, Tayyeb A and Ali G: Expression profiling of adhesion proteins during prenatal and postnatal liver development in rats. Stem Cells Cloning. 10:21–28. 2017.PubMed/NCBI

6 

Tanaka M, Okabe M, Suzuki K, Kamiya Y, Tsukahara Y, Saito S and Miyajima A: Mouse hepatoblasts at distinct developmental stages are characterized by expression of EpCAM and DLK1: Drastic change of EpCAM expression during liver development. Mech Dev. 126:665–676. 2009. View Article : Google Scholar : PubMed/NCBI

7 

Okabe M, Tsukahara Y, Tanaka M, Suzuki K, Saito S, Kamiya Y, Tsujimura T, Nakamura K and Miyajima A: Potential hepatic stem cells reside in EpCAM+ cells of normal and injured mouse liver. Development. 136:1951–1960. 2009. View Article : Google Scholar : PubMed/NCBI

8 

Schmelzer E, Zhang L, Bruce A, Wauthier E, Ludlow J, Yao HL, Moss N, Melhem A, McClelland R, Turner W, et al: Human hepatic stem cells from fetal and postnatal donors. J Exp Med. 204:1973–1987. 2007. View Article : Google Scholar : PubMed/NCBI

9 

Lu H, Ma J, Yang Y, Shi W and Luo L: EpCAM is an endoderm-specific Wnt derepressor that licenses hepatic development. Dev Cell. 24:543–553. 2013. View Article : Google Scholar : PubMed/NCBI

10 

Matsumoto T, Takai A, Eso Y, Kinoshita K, Manabe T, Seno H, Chiba T and Marusawa H: Proliferating EpCAM-positive ductal cells in the inflamed liver give rise to hepatocellular carcinoma. Cancer Res. 77:6131–6143. 2017. View Article : Google Scholar : PubMed/NCBI

11 

Yamashita T, Forgues M, Wang W, Kim JW, Ye Q, Jia H, Budhu A, Zanetti KA, Chen Y, Qin LX, et al: EpCAM and alpha-fetoprotein expression defines novel prognostic subtypes of hepatocellular carcinoma. Cancer Res. 68:1451–1461. 2008. View Article : Google Scholar : PubMed/NCBI

12 

Yamashita T, Ji J, Budhu A, Forgues M, Yang W, Wang HY, Jia H, Ye Q, Qin LX, Wauthier E, et al: EpCAM-positive hepatocellular carcinoma cells are tumor-initiating cells with stem/progenitor cell features. Gastroenterology. 136:1012–1024. 2009. View Article : Google Scholar : PubMed/NCBI

13 

Ji J, Yamashita T, Budhu A, Forgues M, Jia HL, Li C, Deng C, Wauthier E, Reid LM, Ye QH, et al: Identification of microRNA-181 by genome-wide screening as a critical player in EpCAM-positive hepatic cancer stem cells. Hepatology. 50:472–480. 2009. View Article : Google Scholar : PubMed/NCBI

14 

Mani SK, Zhang H, Diab A, Pascuzzi PE, Lefrançois L, Fares N, Bancel B, Merle P and Andrisani O: EpCAM-regulated intra-membrane proteolysis induces a cancer stem cell-like gene signature in hepatitis B virus-infected hepatocytes. J Hepatol. 65:888–898. 2016. View Article : Google Scholar : PubMed/NCBI

15 

Song Y, Liu C, Liu X, Trottier J, Beaudoin M, Zhang L, Pope C, Peng G, Barbier O, Zhong X, et al: H19 promotes cholestatic liver fibrosis by preventing ZEB1-mediated inhibition of epithelial cell adhesion molecule. Hepatology. 66:1183–1196. 2017. View Article : Google Scholar : PubMed/NCBI

16 

Lu C, Sun X, Li N, Wang W, Kuang D, Tong P, Han Y and Dai J: CircRNAs in the tree shrew (Tupaia belangeri) brain during postnatal development and aging. Aging (Albany NY). 10:833–852. 2018. View Article : Google Scholar

17 

Maiese K: Disease onset and aging in the world of circular RNAs. J Transl Sci. 2:327–329. 2016. View Article : Google Scholar : PubMed/NCBI

18 

Luo Q, Zhang L, Li X, Fu B, Deng Z, Qing C, Su R, Xu J, Guo Y, Huang Z and Li J: Identification of circular RNAs hsa_circ_0044235 in peripheral blood as novel biomarkers for rheumatoid arthritis. Clin Exp Immunol. 194:118–124. 2018. View Article : Google Scholar : PubMed/NCBI

19 

Wang X and Fang L: Advances in circular RNAs and their roles in breast cancer. J Exp Clin Cancer Re. 37:2062018. View Article : Google Scholar

20 

Holdt LM, Kohlmaier A and Teupser D: Molecular functions and specific roles of circRNAs in the cardiovascular system. Noncoding RNA Res. 3:75–98. 2018. View Article : Google Scholar : PubMed/NCBI

21 

Yu CX and Sun S: An emerging role for circular RNAs in osteoarthritis. Yonsei Med J. 59:349–355. 2018. View Article : Google Scholar : PubMed/NCBI

22 

Yao R, Zou H and Liao W: Prospect of circular RNA in hepatocellular carcinoma: A novel potential biomarker and therapeutic target. Front Oncol. 8:3322018. View Article : Google Scholar : PubMed/NCBI

23 

Guo XY, He CX, Wang YQ, Sun C, Li GM, Su Q, Pan Q and Fan JG: Circular RNA profiling and bioinformatic modeling identify its regulatory role in hepatic steatosis. Biomed Res Int. 2017:59361712017. View Article : Google Scholar : PubMed/NCBI

24 

Guo J, Zhou Y, Cheng Y, Fang W, Hu G, Wei J, Lin Y, Man Y, Guo L, Sun M, et al: Metformin-induced changes of the coding transcriptome and non-coding RNAs in the livers of non-alcoholic fatty liver disease mice. Cell Physiol Biochem. 45:1487–1505. 2018. View Article : Google Scholar : PubMed/NCBI

25 

Langmead B and Salzberg SL: Fast gapped-read alignment with Bowtie 2. Nat Methods. 9:357–359. 2012. View Article : Google Scholar : PubMed/NCBI

26 

Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R and Salzberg SL: TopHat2: Accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 14:R362013. View Article : Google Scholar : PubMed/NCBI

27 

Memczak S, Jens M, Elefsinioti A, Torti F, Krueger J, Rybak A, Maier L, Mackowiak SD, Gregersen LH, Munschauer M, et al: Circular RNAs are a large class of animal RNAs with regulatory potency. Nature. 495:333–338. 2013. View Article : Google Scholar : PubMed/NCBI

28 

Choi E, Zhang X, Xing C and Yu H: Mitotic checkpoint regulators control insulin signaling and metabolic homeostasis. Cell. 166:567–581. 2016. View Article : Google Scholar : PubMed/NCBI

29 

Stygar D, Andrare D, Bażanów B, Chełmecka E, Sawczyn T, Skrzep-Poloczek B, Olszańska E, Karcz KW and Jochem J: The impact of DJOS surgery, a high fat diet and a control diet on the enzymes of glucose metabolism in the liver and muscles of Sprague-Dawley rats. Front Physiol. 10:5712019. View Article : Google Scholar : PubMed/NCBI

30 

Adeva-Andany MM, González-Lucán M, Donapetry-García C, Fernández-Fernández C and Ameneiros-Rodríguez E: Glycogen metabolism in humans. BBA Clin. 5:85–100. 2016. View Article : Google Scholar : PubMed/NCBI

31 

Zhang DD, Zhang JG, Wang YZ, Liu Y, Liu GL and Li XY: Per-Arnt-Sim Kinase (PASK): An emerging regulator of mammalian glucose and lipid metabolism. Nutrients. 7:7437–7450. 2015. View Article : Google Scholar : PubMed/NCBI

32 

Hajiaghaalipour F, Khalilpourfarshbafi M and Arya A: Modulation of glucose transporter protein by dietary flavonoids in type 2 diabetes mellitus. Int J Biol Sci. 11:508–524. 2015. View Article : Google Scholar : PubMed/NCBI

33 

Terris B, Cavard C and Perret C: EpCAM, a new marker for cancer stem cells in hepatocellular carcinoma. J Hepatol. 52:280–281. 2010. View Article : Google Scholar

34 

Weiss TS and Dayoub R: Thy-1 (CD90)-positive hepatic progenitor cells, hepatoctyes, and non-parenchymal liver cells isolated from human livers. Methods Mol Biol. 1506:75–89. 2017. View Article : Google Scholar

35 

Bose R and Ain R: Regulation of transcription by circular RNAs. Adv Exp Med Biol. 1087:81–94. 2018. View Article : Google Scholar : PubMed/NCBI

36 

Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK and Kjems J: Natural RNA circles function as efficient microRNA sponges. Nature. 495:384–388. 2013. View Article : Google Scholar : PubMed/NCBI

37 

Franz A, Rabien A, Stephan C, Ralla B, Fuchs S, Jung K and Fendler A: Circular RNAs: A new class of biomarkers as a rising interest in laboratory medicine. Clin Chem Lab Med. 56:1992–2003. 2018. View Article : Google Scholar : PubMed/NCBI

38 

Li X, Yang L and Chen LL: The biogenesis, functions, and challenges of circular RNAs. Mol Cell. 71:428–442. 2018. View Article : Google Scholar : PubMed/NCBI

39 

Wang Q, Yang ZL, Zou Q, Yuan Y, Li J, Liang L, Zeng G and Chen S: SHP2 and UGP2 are biomarkers for progression and poor prognosis of gallbladder cancer. Cancer Invest. 34:255–264. 2016. View Article : Google Scholar : PubMed/NCBI

40 

Khandelwal P, Sinha A, Jain V, Houghton J, Hari P and Bagga A: Fanconi syndrome and neonatal diabetes: Phenotypic heterogeneity in patients with GLUT2 defects. CEN Case Rep. 7:1–4. 2018. View Article : Google Scholar :

Related Articles

Journal Cover

September 2019
Volume 44 Issue 3

Print ISSN: 1107-3756
Online ISSN:1791-244X

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Yang, Y., Liu, S., Lei, Z., Chen, G., Huang, L., Yang, F. ... Guo, J. (2019). Circular RNA profile in liver tissue of EpCAM knockout mice. International Journal of Molecular Medicine, 44, 1063-1077. https://doi.org/10.3892/ijmm.2019.4270
MLA
Yang, Y., Liu, S., Lei, Z., Chen, G., Huang, L., Yang, F., Lei, Y., Liu, Y., Yang, L., Liu, W., Lai, L., Guo, J."Circular RNA profile in liver tissue of EpCAM knockout mice". International Journal of Molecular Medicine 44.3 (2019): 1063-1077.
Chicago
Yang, Y., Liu, S., Lei, Z., Chen, G., Huang, L., Yang, F., Lei, Y., Liu, Y., Yang, L., Liu, W., Lai, L., Guo, J."Circular RNA profile in liver tissue of EpCAM knockout mice". International Journal of Molecular Medicine 44, no. 3 (2019): 1063-1077. https://doi.org/10.3892/ijmm.2019.4270