Open Access

Identification of long non‑coding RNA‑mediated transcriptional dysregulation triplets reveals global patterns and prognostic biomarkers for ER+/PR+, HER2‑ and triple negative breast cancer

  • Authors:
    • Zhengwei Du
    • Wei Gao
    • Jiayi Sun
    • Yujing Li
    • Yu Sun
    • Tong Chen
    • Shuke Ge
    • Wenbin Guo
  • View Affiliations

  • Published online on: June 27, 2019     https://doi.org/10.3892/ijmm.2019.4261
  • Pages: 1015-1025
  • Copyright: © Du et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Breast cancer (BRCA) is the most common type of cancer in adult females. Estrogen receptor (ER)+/progesterone receptor (PR)+, human epidermal‑growth factor receptor 2 (HER2)‑ BRCA and triple‑negative breast cancer (TNBC) are two important subtypes of this disease. Long non‑coding RNA (lncRNA)‑mediated transcriptional dysregulation triplets (lncTDTs) may contribute to the development of cancer; however, the precise functional roles of lncTDTs in ER+/PR+, HER2‑ BRCA and TNBC require further investigation. In the present study, an integrated and computational approach was conducted to identify lncTDTs based on transcription factor (TF), gene, lncRNA expression profiles and experimentally verified TF‑gene interactions. The regulatory patterns of these lncTDTs are complex and differed in ER+/PR+, HER2‑ BRCA and TNBC. Of note, five common lncTDTs were reported for these BRCA subtypes. Functional analysis revealed lncTDTs to be enriched in the PI3K/AKT signaling pathway within the two BRCA subtypes. Additionally, certain lncTDTs were associated with survival and may be considered candidate prognostic biomarkers for BRCA subtypes. Collectively, the results of the present study provide novel insight into the functions and mechanisms of lncRNAs in ER+/PR+, HER2‑ BRCA and TNBC, and may aid the development of targeted treatments against certain subtypes of BRCA.

References

1 

Onitilo AA, Engel JM, Greenlee RT and Mukesh BN: Breast cancer subtypes based on ER/PR and Her2 expression: Comparison of clinicopathologic features and survival. Clin Med Res. 7:4–13. 2009. View Article : Google Scholar : PubMed/NCBI

2 

Partridge AH, Hughes ME, Warner ET, Ottesen RA, Wong YN, Edge SB, Theriault RL, Blayney DW, Niland JC, Winer EP, et al: Subtype-dependent relationship between young age at diagnosis and breast cancer survival. J Clin Oncol. 34:3308–3314. 2016. View Article : Google Scholar : PubMed/NCBI

3 

Elston CW: Classification and grading of invasive breast carcinoma. Verh Dtsch Ges Pathol. 89:35–44. 2005.

4 

Longacre TA, Ennis M, Quenneville LA, Bane AL, Bleiweiss IJ, Carter BA, Catelano E, Hendrickson MR, Hibshoosh H, Layfield LJ, et al: Interobserver agreement and reproducibility in classification of invasive breast carcinoma: An NCI breast cancer family registry study. Mod Pathol. 19:195–207. 2006. View Article : Google Scholar

5 

Zhang L, Yu Q, Wu XC, Hsieh MC, Loch M, Chen VW, Fontham E and Ferguson T: Impact of chemotherapy relative dose intensity on cause-specific and overall survival for stage I-III breast cancer: ER+/PR+, HER2 vs. triple-negative. Breast Cancer Res Treat. 169:pp. 175–187. 2018, View Article : Google Scholar : PubMed/NCBI

6 

Lee HJ, Song IH, Seo AN, Lim B, Kim JY, Lee JJ, Park IA, Shin J, Yu JH, Ahn JH and Gong G: Correlations between molecular subtypes and pathologic response patterns of breast cancers after neoadjuvant chemotherapy. Ann Surg Oncol. 22:392–400. 2015. View Article : Google Scholar

7 

Kuerer HM, Newman LA, Smith TL, Ames FC, Hunt KK, Dhingra K, Theriault RL, Singh G, Binkley SM, Sneige N, et al: Clinical course of breast cancer patients with complete pathologic primary tumor and axillary lymph node response to doxorubicin-based neoadjuvant chemotherapy. J Clin Oncol. 17:460–469. 1999. View Article : Google Scholar : PubMed/NCBI

8 

Huarte M: The emerging role of lncRNAs in cancer. Nat Med. 21:1253–1261. 2015. View Article : Google Scholar : PubMed/NCBI

9 

Prensner JR and Chinnaiyan AM: The emergence of lncRNAs in cancer biology. Cancer Discov. 1:391–407. 2011. View Article : Google Scholar : PubMed/NCBI

10 

Kim J, Piao HL, Kim BJ, Yao F, Han Z, Wang Y, Xiao Z, Siverly AN, Lawhon SE, Ton BN, et al: Long noncoding RNA MALAT1 suppresses breast cancer metastasis. Nat Genet. 50:1705–1715. 2018. View Article : Google Scholar : PubMed/NCBI

11 

Dong H, Wang W, Mo S, Liu Q, Chen X, Chen R, Zhang Y, Zou K, Ye M, He X, et al: Long non-coding RNA SNHG14 induces trastuzumab resistance of breast cancer via regulating PABPC1 expression through H3K27 acetylation. J Cell Mol Med. 22:4935–4947. 2018. View Article : Google Scholar : PubMed/NCBI

12 

Wang K, Li X, Song C and Li M: LncRNA AWPPH promotes the growth of triple-negative breast cancer by up-regulating frizzled homolog 7 (FZD7). Biosci Rep. 38:2018. View Article : Google Scholar

13 

Yang R, Xing L, Wang M, Chi H, Zhang L and Chen J: Comprehensive analysis of differentially expressed profiles of lncRNAs/mRNAs and miRNAs with associated ceRNA networks in triple-negative breast cancer. Cell Physiol Biochem. 50:473–488. 2018. View Article : Google Scholar : PubMed/NCBI

14 

Spitz F and Furlong EE: Transcription factors: From enhancer binding to developmental control. Nat Rev Genet. 13:613–626. 2012. View Article : Google Scholar : PubMed/NCBI

15 

Flores M, Hsiao TH, Chiu YC, Chuang EY, Huang Y and Chen Y: Gene regulation, modulation, and their applications in gene expression data analysis. Adv Bioinformatics. 2013:3606782013. View Article : Google Scholar : PubMed/NCBI

16 

Wang K, Saito M, Bisikirska BC, Alvarez MJ, Lim WK, Rajbhandari P, Shen Q, Nemenman I, Basso K, Margolin AA, et al: Genome-wide identification of post-translational modulators of transcription factor activity in human B cells. Nat Biotechnol. 27:829–839. 2009. View Article : Google Scholar : PubMed/NCBI

17 

Riley T, Sontag E, Chen P and Levine A: Transcriptional control of human p53-regulated genes. Nat Rev Mol Cell Biol. 9:402–412. 2008. View Article : Google Scholar : PubMed/NCBI

18 

Tripathi V, Shen Z, Chakraborty A, Giri S, Freier SM, Wu X, Zhang Y, Gorospe M, Prasanth SG, Lal A and Prasanth KV: Long noncoding RNA MALAT1 controls cell cycle progression by regulating the expression of oncogenic transcription factor B-MYB. PLoS Genet. 9:pp. e10033682013, View Article : Google Scholar : PubMed/NCBI

19 

Xiang JF, Yin QF, Chen T, Zhang Y, Zhang XO, Wu Z, Zhang S, Wang HB, Ge J, Lu X, et al: Human colorectal cancer-specific CCAT1-L lncRNA regulates long-range chromatin interactions at the MYC locus. Cell Res. 24:513–531. 2014. View Article : Google Scholar : PubMed/NCBI

20 

Gao Y, Wang P, Wang Y, Ma X, Zhi H, Zhou D, Li X, Fang Y, Shen W, Xu Y, et al: Lnc2Cancer v2.0: Updated database of experimentally supported long non-coding RNAs in human cancers. Nucleic Acids Res. 47:D1028–D1033. 2019. View Article : Google Scholar :

21 

Piñero J, Bravo À, Queralt-Rosinach N, Gutiérrez-Sacristán A, Deu-Pons J, Centeno E, García-García J, Sanz F and Furlong LI: DisGeNET: A comprehensive platform integrating information on human disease-associated genes and variants. Nucleic Acids Res. 45:D833–D839. 2017. View Article : Google Scholar :

22 

Wingender E, Dietze P, Karas H and Knüppel R: TRANSFAC: A database on transcription factors and their DNA binding sites. Nucleic Acids Res. 24:238–241. 1996. View Article : Google Scholar : PubMed/NCBI

23 

Kuleshov MV, Jones MR, Rouillard AD, Fernandez NF, Duan Q, Wang Z, Koplev S, Jenkins SL, Jagodnik KM, Lachmann A, et al: Enrichr: A comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 44:W90–W97. 2016. View Article : Google Scholar : PubMed/NCBI

24 

Gupta RA, Shah N, Wang KC, Kim J, Horlings HM, Wong DJ, Tsai MC, Hung T, Argani P, Rinn JL, et al: Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature. 464:1071–1076. 2010. View Article : Google Scholar : PubMed/NCBI

25 

Li H, Jia Y, Cheng J, Liu G and Song F: LncRNA NCK1-AS1 promotes proliferation and induces cell cycle progression by crosstalk NCK1-AS1/miR-6857/CDK-1 pathway. Cell Death Dis. 9:1982018. View Article : Google Scholar

26 

Zhang WY, Liu YJ, He Y and Chen P: Suppression of long noncoding RNA NCK1-AS1 increases chemosensitivity to cisplatin in cervical cancer. J Cell Physiol. 234:4302–4313. 2019. View Article : Google Scholar

27 

Hennessy BT, Smith DL, Ram PT, Lu Y and Mills GB: Exploiting the PI3K/AKT pathway for cancer drug discovery. Nat Rev Drug Discov. 4:988–1004. 2005. View Article : Google Scholar : PubMed/NCBI

28 

Osaki M, Oshimura M and Ito H: PI3K-Akt pathway: Its functions and alterations in human cancer. Apoptosis. 9:667–676. 2004. View Article : Google Scholar : PubMed/NCBI

29 

Luo J, Manning BD and Cantley LC: Targeting the PI3K-Akt pathway in human cancer: Rationale and promise. Cancer Cell. 4:257–262. 2003. View Article : Google Scholar : PubMed/NCBI

30 

Chandarlapaty S, Sakr RA, Giri D, Patil S, Heguy A, Morrow M, Modi S, Norton L, Rosen N, Hudis C and King TA: Frequent mutational activation of the PI3K-AKT pathway in trastuzumab-resistant breast cancer. Clin Cancer Res. 18:6784–6791. 2012. View Article : Google Scholar : PubMed/NCBI

31 

Berns K, Horlings HM, Hennessy BT, Madiredjo M, Hijmans EM, Beelen K, Linn SC, Gonzalez-Angulo AM, Stemke-Hale K, Hauptmann M, et al: A functional genetic approach identifies the PI3K pathway as a major determinant of trastuzumab resistance in breast cancer. Cancer Cell. 12:395–402. 2007. View Article : Google Scholar : PubMed/NCBI

32 

Anderson WF and Matsuno R: Breast cancer heterogeneity: A mixture of at least two main types? J Natl Cancer Inst. 98:948–951. 2006. View Article : Google Scholar : PubMed/NCBI

33 

Perou CM, Sørlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, Pollack JR, Ross DT, Johnsen H, Akslen LA, et al: Molecular portraits of human breast tumours. Nature. 406:747–752. 2000. View Article : Google Scholar : PubMed/NCBI

34 

Haffty BG, Yang Q, Reiss M, Kearney T, Higgins SA, Weidhaas J, Harris L, Hait W and Toppmeyer D: Locoregional relapse and distant metastasis in conservatively managed triple negative early-stage breast cancer. J Clin Oncol. 24:5652–5657. 2006. View Article : Google Scholar : PubMed/NCBI

35 

Li SP, Padhani AR, Taylor NJ, Beresford MJ, Ah-See ML, Stirling JJ, d'Arcy JA, Collins DJ and Makris A: Vascular characterisation of triple negative breast carcinomas using dynamic MRI. Eur Radiol. 21:1364–1373. 2011. View Article : Google Scholar : PubMed/NCBI

36 

Li Y, Zhang N, Zhang H and Yang Q: Comparative prognostic analysis for triple-negative breast cancer with metaplastic and invasive ductal carcinoma. J Clin Pathol. 72:418–424. 2019. View Article : Google Scholar : PubMed/NCBI

37 

Häberle L, Hein A, Rübner M, Schneider M, Ekici AB, Gass P, Hartmann A, Schulz-Wendtland R, Beckmann MW, Lo WY, et al: Predicting triple-negative breast cancer subtype using multiple single nucleotide polymorphisms for breast cancer risk and several variable selection methods. Geburtshilfe Frauenheilkd. 77:667–678. 2017. View Article : Google Scholar : PubMed/NCBI

38 

Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, Hastie T, Eisen MB, van de Rijn M, Jeffrey SS, et al: Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA. 98:10869–10874. 2001. View Article : Google Scholar : PubMed/NCBI

39 

Jiang YZ, Ma D, Suo C, Shi J, Xue M, Hu X, Xiao Y, Yu KD, Liu YR, Yu Y, et al: Genomic and transcriptomic landscape of triple-negative breast cancers: Subtypes and treatment strategies. Cancer Cell. 35:428–440.e5. 2019. View Article : Google Scholar : PubMed/NCBI

40 

Shin VY, Chen J, Cheuk IW, Siu MT, Ho CW, Wang X, Jin H and Kwong A: Long non-coding RNA NEAT1 confers oncogenic role in triple-negative breast cancer through modulating chemo-resistance and cancer stemness. Cell Death Dis. 10:2702019. View Article : Google Scholar

41 

Fan CN, Ma L and Liu N: Comprehensive analysis of novel three-long noncoding RNA signatures as a diagnostic and prognostic biomarkers of human triple-negative breast cancer. J Cell Biochem. 120:3185–3196. 2019. View Article : Google Scholar

42 

Yang F, Shen Y, Zhang W, Jin J, Huang D, Fang H, Ji W, Shi Y, Tang L, Chen W, et al: An androgen receptor negatively induced long non-coding RNA ARNILA binding to miR-204 promotes the invasion and metastasis of triple-negative breast cancer. Cell Death Differ. 25:2209–2220. 2018. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

September 2019
Volume 44 Issue 3

Print ISSN: 1107-3756
Online ISSN:1791-244X

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Du, Z., Gao, W., Sun, J., Li, Y., Sun, Y., Chen, T. ... Guo, W. (2019). Identification of long non‑coding RNA‑mediated transcriptional dysregulation triplets reveals global patterns and prognostic biomarkers for ER+/PR+, HER2‑ and triple negative breast cancer. International Journal of Molecular Medicine, 44, 1015-1025. https://doi.org/10.3892/ijmm.2019.4261
MLA
Du, Z., Gao, W., Sun, J., Li, Y., Sun, Y., Chen, T., Ge, S., Guo, W."Identification of long non‑coding RNA‑mediated transcriptional dysregulation triplets reveals global patterns and prognostic biomarkers for ER+/PR+, HER2‑ and triple negative breast cancer". International Journal of Molecular Medicine 44.3 (2019): 1015-1025.
Chicago
Du, Z., Gao, W., Sun, J., Li, Y., Sun, Y., Chen, T., Ge, S., Guo, W."Identification of long non‑coding RNA‑mediated transcriptional dysregulation triplets reveals global patterns and prognostic biomarkers for ER+/PR+, HER2‑ and triple negative breast cancer". International Journal of Molecular Medicine 44, no. 3 (2019): 1015-1025. https://doi.org/10.3892/ijmm.2019.4261