Open Access

Celecoxib inhibits the epithelial-to-mesenchymal transition in bladder cancer via the miRNA-145/TGFBR2/Smad3 axis

  • Authors:
    • Xiaoqiang Liu
    • Yanlong Wu
    • Zhengtao Zhou
    • Mingchuan Huang
    • Wen Deng
    • Yibing Wang
    • Xiaochen Zhou
    • Luyao Chen
    • Yu Li
    • Tao Zeng
    • Gongxian Wang
    • Bin Fu
  • View Affiliations

  • Published online on: June 12, 2019     https://doi.org/10.3892/ijmm.2019.4241
  • Pages: 683-693
  • Copyright: © Liu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Celecoxib, a selective cyclooxygenase‑2 inhibitor, has chemo‑preventive activity against different cancer types, including bladder cancer (BC). However, the mechanisms by which celecoxib exerts its cancer preventative effects have yet to be completely understood. In the present study, the effect of celecoxib on the epithelial‑to‑mesenchymal transition (EMT) of BC cells and its potential molecular mechanisms were investigated. The results of the present study demonstrated that celecoxib inhibited the proliferation, migration, invasion and EMT of BC cells. Further investigation of the underlying mechanism revealed that celecoxib inhibited EMT by upregulating microRNA (miR)‑145 and downregulating the expression of transforming growth factor β receptor 2 and SMAD family member 3. Furthermore, the combination of celecoxib with miR‑145 mimics demonstrated an additive migration and invasion‑inhibitory effect in BC cell lines.

References

1 

Parkin DM, Pisani P and Ferlay J: Global cancer statistics. CA Cancer J Clin. 49:33–64. 11999. View Article : Google Scholar : PubMed/NCBI

2 

Siegel RL, Miller KD and Jemal A: Cancer statistics, 2018. CA Cancer J Clin. 68:7–30. 2018. View Article : Google Scholar : PubMed/NCBI

3 

Brausi M, Witjes JA, Lamm D, Persad R, Palou J, Colombel M, Buckley R, Soloway M, Akaza H and Böhle A: A review of current guidelines and best practice recommendations for the management of nonmuscle invasive bladder cancer by the international bladder cancer group. J Urol. 186:2158–2167. 2011. View Article : Google Scholar : PubMed/NCBI

4 

Burger M, Catto JWF, Dalbagni G, Grossman HB, Herr H, Karakiewicz P, Kassouf W, Kiemeney LA, La Vecchia C, Shariat S and Lotan Y: Epidemiology and risk factors of urothe-lial bladder cancer. Eur Urol. 63:234–241. 2013. View Article : Google Scholar

5 

Prasad SM, Decastro GJ, Steinberg GD and Medscape: Urothelial carcinoma of the bladder: Definition, treatment and future efforts. Nat Rev Urol. 8:631–642. 2011. View Article : Google Scholar : PubMed/NCBI

6 

Gontero P, Bohle A, Malmstrom PU, O'Donnell MA, Oderda M, Sylvester R and Witjes F: The role of bacillus calmetteguérin in the treatment of non-muscle-invasive bladder cancer. Eur Urol. 57:410–429. 2010. View Article : Google Scholar

7 

Shariat SF, Kim J-H, Ayala GE, Kho K, Wheeler TM and Lerner SP: Cyclooxygenase-2 is highly expressed in carcinoma in situ and T1 transitional cell carcinoma of the bladder. J Urol. 169:938–942. 2003. View Article : Google Scholar : PubMed/NCBI

8 

Ristimäki A, Nieminen O, Saukkonen K, Hotakainen K, Nordling S and Haglund C: Expression of cyclooxygenase-2 in human transitional cell carcinoma of the urinary bladder. Am J Pathol. 158:849–853. 2001. View Article : Google Scholar : PubMed/NCBI

9 

Gee J, Lee IL, Jendiroba D, Fischer SM, Grossman HB and Sabichi AL: Selective cyclooxygenase-2 inhibitors inhibit growth and induce apoptosis of bladder cancer. Oncol Rep. 15:471–477. 2006.PubMed/NCBI

10 

Adhim Z, Matsuoka T, Bito T, Shigemura K, Lee KM, Kawabata M, Fujisawa M, Nibu K and Shirakawa T: In vitro and in vivo inhibitory effect of three Cox-2 inhibitors and epithelial-to-mesenchymal transition in human bladder cancer cell lines. Br J Cancer. 105:393–402. 2011. View Article : Google Scholar : PubMed/NCBI

11 

Dovedi SJ, Kirby JA, Davies BR, Leung H and Kelly JD: Celecoxib has potent antitumour effects as a single agent and in combination with BCG immunotherapy in a model of urothelial cell carcinoma. Eur Urol. 54:621–630. 2008. View Article : Google Scholar : PubMed/NCBI

12 

Bartel DP: MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell. 116:281–297. 2004. View Article : Google Scholar : PubMed/NCBI

13 

Gebert LFR and MacRae IJ: Regulation of microRNA function in animals. Nat Rev Mol Cell Biol. 20:21–37. 2019. View Article : Google Scholar

14 

Gowda R, Kardos G, Sharma A, Singh S and Robertson GP: Nanoparticle-based celecoxib and plumbagin for the synergistic treatment of melanoma. Mol Cancer Ther. 16:440–452. 2016. View Article : Google Scholar : PubMed/NCBI

15 

Gowda R, Sharma A and Robertson GP: Synergistic inhibitory effects of celecoxib and plumbagin on melanoma tumor growth. Cancer Lett. 385:243–250. 2017. View Article : Google Scholar

16 

Singh S: Liposome encapsulation of doxorubicin and celecoxib in combination inhibits progression of human skin cancer cells. Int J Nanomedicine. 13:11–13. 2018. View Article : Google Scholar : PubMed/NCBI

17 

Agarwal V, Bell GW, Nam JW and Bartel DP: Predicting effective microRNA target sites in mammalian mRNAs. Elife. 4:2015. View Article : Google Scholar

18 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods. 25:402–408. 2001. View Article : Google Scholar

19 

Mittal V: Epithelial mesenchymal transition in tumor metastasis. Annu Rev Pathol Mech Dis. 13:395–412. 2018. View Article : Google Scholar

20 

Suzuki HI: MicroRNA control of TGF-β signaling. Int J Mol Sci. 19:pii: E1901. 2018. View Article : Google Scholar

21 

Expósito-Villén A, E Aránega A and Franco D: Functional role of non-coding RNAs during epithelial-to-mesenchymal transition. Noncoding RNA. 4: pii:E142018.

22 

Falzone L, Candido S, Salemi R, Basile MS, Scalisi A, McCubrey JA, Torino F, Signorelli SS, Montella M and Libra M: Computational identification of microRNAs associated to both epithelial to mesenchymal transition and NGAL/MMP-9 pathways in bladder cancer. Oncotarget. 8:72758–72766. 2016.

23 

Ren D, Wang M, Guo W, Huang S, Wang Z, Zhao X, Du H, Song L and Peng X: Double-negative feedback loop between ZEB2 and miR-145 regulates epithelial-mesenchymal transition and stem cell properties in prostate cancer cells. Cell Tissue Res. 358:763–778. 2014. View Article : Google Scholar : PubMed/NCBI

24 

Hu H, Xu Z, Li C, Xu C, Lei Z, Zhang HT and Zhao J: miR-145 and miR-203 represses TGF-β-induced epithelial-mesenchymal transition and invasion by inhibiting SMAD3 in non-small cell lung cancer cells. Lung Cancer. 97:87–94. 2016. View Article : Google Scholar : PubMed/NCBI

25 

MicroRNA-145-5p inhibits gastric cancer invasiveness through targeting N-cadherin and ZEB2 to suppress epithelial-mesenchymal transition. Onco Targets Ther. 9:2305–2315. 2016.PubMed/NCBI

26 

Chang Y, Yan W, Sun C, Liu Q, Wang J and Wang M: miR-145-5p inhibits epithelial-mesenchymal transition via the JNK signaling pathway by targeting MAP3K1 in non-small cell lung cancer cells. Oncol Lett. 14:6923–6928. 2017.

27 

Tan J, Qiu K, Li M and Liang Y: Double-negative feedback loop between long non-coding RNA TUG1 and miR-145 promotes epithelial to mesenchymal transition and radioresis-tance in human bladder cancer cells. FEBS Lett. 589:3175–3181. 2015. View Article : Google Scholar : PubMed/NCBI

28 

Davies G, Jiang WG and Mason MD: Cell-cell adhesion molecules and their associated proteins in bladder cancer cells and their role in mitogen induced cell-cell dissociation and invasion. Anticancer Res. 19:547–552. 1999.PubMed/NCBI

29 

Mao Q, Li Y, Zheng X, Yang K, Shen H, Qin J, Bai Y, Kong D, Jia X and Xie L: Up-regulation of E-cadherin by small activating RNA inhibits cell invasion and migration in 5637 human bladder cancer cells. Biochem Biophys Res Commun. 375:566–570. 2008. View Article : Google Scholar : PubMed/NCBI

30 

Jang TJ, Cha WH and Lee KS: Reciprocal correlation between the expression of cyclooxygenase-2 and E-cadherin in human bladder transitional cell carcinomas. Virchows Arch. 457:319–328. 2010. View Article : Google Scholar : PubMed/NCBI

31 

Lamouille S, Xu J and Derynck R: Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol. 15:178–196. 2014. View Article : Google Scholar : PubMed/NCBI

32 

Derynck R, Muthusamy BP and Saeteurn KY: Signaling pathway cooperation in TGF-β-induced epithelial-mesenchymal transition. Curr Opin Cell Biol. 31:56–66. 2014. View Article : Google Scholar : PubMed/NCBI

33 

Song J and Shi W: The concomitant apoptosis and EMT underlie the fundamental functions of TGF-β. Acta Biochim Biophys Sin (Shanghai). 50:91–97. 2018. View Article : Google Scholar

34 

Cantelli G, Crosas-Molist E, Georgouli M and Sanz-Moreno V: TGFB-induced transcription in cancer. Semin Cancer Biol. 42:60–69. 2017. View Article : Google Scholar

35 

Xiang Y, Zhang Y, Tang Y and Li Q: MALAT1 modulates TGF-β1-induced endothelial-to-mesenchymal transition through downregulation of miR-145. Cell Physiol Biochem. 42:357–372. 2017. View Article : Google Scholar

36 

Megiorni F, Cialfi S, Cimino G, De Biase RV, Dominici C, Quattrucci S and Pizzuti A: Elevated levels of miR-145 correlate with SMAD3 down-regulation in cystic fibrosis patients. J Cyst Fibros. 12:797–802. 2013. View Article : Google Scholar : PubMed/NCBI

37 

Inamoto T, Taniguchi K, Takahara K, Iwatsuki A, Takai T, Komura K, Yoshikawa Y, Uchimoto T, Saito K, Tanda N, et al: Intravesical administration of exogenous microRNA-145 as a therapy for mouse orthotopic human bladder cancer xenograft. Oncotarget. 6:21628–21635. 2015. View Article : Google Scholar : PubMed/NCBI

38 

Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY, Brooks M, Reinhard F, Zhang CC, Shipitsin M, et al: The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell. 133:704–715. 2008. View Article : Google Scholar : PubMed/NCBI

39 

Kurtova AV, Xiao J, Mo Q, Pazhanisamy S, Krasnow R, Lerner SP, Chen F, Roh TT, Lay E, Ho PL and Chan KS: Blocking PGE2-induced tumour repopulation abrogates bladder cancer chemoresistance. Nature. 517:209–213. 2015. View Article : Google Scholar :

40 

Sachdeva M, Liu Q, Cao J, Lu Z and Mo Y: Negative regulation of miR-145 by C/EBP-β through the Akt pathway in cancer cells. Nucleic Acids Res. 40:6683–6692. 2012. View Article : Google Scholar : PubMed/NCBI

41 

Takagi T, Iio A, Nakagawa Y, Naoe T, Tanigawa N and Akao Y: Decreased expression of microRNA-143 and-145 in human gastric cancers. Oncology. 77:12–21. 2009. View Article : Google Scholar

42 

Slaby O, Svoboda M, Fabian P, Smerdova T, Knoflickova D, Bednarikova M, Nenutil R and Vyzula R: Altered expression of miR-21, miR-31, miR-143 and miR-145 is related to clinicopatho-logic features of colorectal cancer. Oncology. 72:397–402. 2008. View Article : Google Scholar

43 

Liu X, Sempere LF, Galimberti F, Freemantle SJ, Black C, Dragnev KH, Ma Y, Fiering S, Memoli V, Li H, et al: Uncovering growth-suppressive microrNAs in lung cancer. Clin Cancer Res. 15:1177–1183. 2009. View Article : Google Scholar : PubMed/NCBI

44 

Tong AW, Fulgham P, Jay C, Chen P, Khalil I, Liu S, Senzer N, Eklund AC, Han J and Nemunaitis J: MicroRNA profile analysis of human prostate cancers. Cancer Gene Ther. 16:206–216. 2009. View Article : Google Scholar

45 

Ichimi T, Enokida H, Okuno Y, Kunimoto R, Chiyomaru T, Kawamoto K, Kawahara K, Toki K, Kawakami K, Nishiyama K, et al: Identification of novel microRNA targets based on microRNA signatures in bladder cancer. Int J Cancer. 125:345–352. 2009. View Article : Google Scholar : PubMed/NCBI

46 

Zhuang J, Shen L, Yang L, Huang X, Lu Q, Cui Y, Zheng X, Zhao X, Zhang D, Huang R, et al: TGFβ1 promotes gemcitabine resistance through regulating the LncRNA-LET/NF90/miR-145 signaling axis in bladder cancer. Theranostics. 7:3053–3067. 2017. View Article : Google Scholar :

47 

Zhu Z, Xu T, Wang L, Wang X, Zhong S, Xu C and Shen Z: MicroRNA-145 directly targets the insulin-like growth factor receptor i in human bladder cancer cells. FEBS Lett. 588:3180–3185. 2014. View Article : Google Scholar : PubMed/NCBI

48 

Noguchi S, Yasui Y, Iwasaki J, Kumazaki M, Yamada N, Naito S and Akao Y: Replacement treatment with microRNA-143 and -145 induces synergistic inhibition of the growth of human bladder cancer cells by regulating PI3K/Akt and MAPK signaling pathways. Cancer Lett. 328:353–361. 2013. View Article : Google Scholar

49 

Kou B, Gao Y, Du C, Shi Q, Xu S, Wang CQ, Wang X, He D and Guo P: miR-145 inhibits invasion of bladder cancer cells by targeting PAK1. Urol Oncol. 32:846–854. 2014. View Article : Google Scholar : PubMed/NCBI

50 

Fujii T, Shimada K, Tatsumi Y, Hatakeyama K, Obayashi C, Fujimoto K and Konishi N: microRNA-145 promotes differentiation in human urothelial carcinoma through down-regulation of syndecan-1. BMC Cancer. 15:8182015. View Article : Google Scholar : PubMed/NCBI

51 

Boominathan L: The tumor suppressors p53, p63, and p73 are regulators of microRNA processing complex. PLoS One. 5:e106152010. View Article : Google Scholar : PubMed/NCBI

52 

Liu HF, Hsiao PW and Chao JI: Celecoxib induces p53-PUMA pathway for apoptosis in human colorectal cancer cells. Chem Biol Interact. 176:48–57. 2008. View Article : Google Scholar : PubMed/NCBI

53 

Piplani H, Vaish V, Rana C and Sanyal SN: Up-regulation of p53 and mitochondrial signaling pathway in apoptosis by a combination of cox-2 inhibitor, celecoxib and dolastatin 15, a marine mollusk linear peptide in experimental colon carcinogenesis. Mol Carcinog. 52:845–858. 2013. View Article : Google Scholar

54 

Gharghabi M, Rezaei F and Mohammadrezaei FM: Celecoxib treatment alters p53 and mdm2 expression via COX-2 crosstalk in A549 cells. Iran J Pharm Res. 15:483–489. 2016.PubMed/NCBI

55 

Chandy M, Ishida M, Shikatani EA, El-Mounayri O, Park LC, Afroze T, Wang T, Marsden PA and Husain M: c-Myb regulates transcriptional activation of miR-143/145 in vascular smooth muscle cells. PLoS One. 13:e02027782018. View Article : Google Scholar : PubMed/NCBI

56 

Haldar R, Shaashua L, Lavon H, Lyons YA, Zmora O, Sharon E, Birnbaum Y, Allweis T, Sood AK, Barshack I, et al: Perioperative inhibition of β-adrenergic and COX2 signaling in a clinical trial in breast cancer patients improves tumor Ki-67 expression, serum cytokine levels, and PBMCs transcriptome. Brain Behav Immun. 73:294–309. 2018. View Article : Google Scholar : PubMed/NCBI

57 

Li R, Yan G, Li Q, Sun H, Hu Y, Sun J and Xu B: MicroRNA-145 protects cardiomyocytes against hydrogen peroxide (H2O2)-induced apoptosis through targeting the mitochondria apoptotic pathway. PLoS One. 7:e449072012. View Article : Google Scholar

58 

Gharib E, Montasser Kouhsari S and Izad M: Punica granatum L. Fruit aqueous extract suppresses reactive oxygen species-mediated p53/p65/miR-145 expressions followed by elevated levels of irs-1 in alloxan-diabetic rats. Cell J. 19:520–527. 2018.

59 

Ostenfeld MS, Bramsen JB, Lamy P, Villadsen SB, Fristrup N, Sørensen KD, Ulhøi B, Borre M, Kjems J, Dyrskjøt L and Orntoft TF: miR-145 induces caspase-dependent and -independent cell death in urothelial cancer cell lines with targeting of an expression signature present in Ta bladder tumors. Oncogene. 29:1073–1084. 2010. View Article : Google Scholar

60 

Javadov S, Hunter JC, Barreto-Torres G and Parodi-Rullan R: Targeting the mitochondrial permeability transition: Cardiac ischemia-reperfusion versus carcinogenesis. Cell Physiol Biochem. 27:179–190. 2011. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

August 2019
Volume 44 Issue 2

Print ISSN: 1107-3756
Online ISSN:1791-244X

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Liu, X., Wu, Y., Zhou, Z., Huang, M., Deng, W., Wang, Y. ... Fu, B. (2019). Celecoxib inhibits the epithelial-to-mesenchymal transition in bladder cancer via the miRNA-145/TGFBR2/Smad3 axis. International Journal of Molecular Medicine, 44, 683-693. https://doi.org/10.3892/ijmm.2019.4241
MLA
Liu, X., Wu, Y., Zhou, Z., Huang, M., Deng, W., Wang, Y., Zhou, X., Chen, L., Li, Y., Zeng, T., Wang, G., Fu, B."Celecoxib inhibits the epithelial-to-mesenchymal transition in bladder cancer via the miRNA-145/TGFBR2/Smad3 axis". International Journal of Molecular Medicine 44.2 (2019): 683-693.
Chicago
Liu, X., Wu, Y., Zhou, Z., Huang, M., Deng, W., Wang, Y., Zhou, X., Chen, L., Li, Y., Zeng, T., Wang, G., Fu, B."Celecoxib inhibits the epithelial-to-mesenchymal transition in bladder cancer via the miRNA-145/TGFBR2/Smad3 axis". International Journal of Molecular Medicine 44, no. 2 (2019): 683-693. https://doi.org/10.3892/ijmm.2019.4241