Open Access

Effects of miR‑340 overexpression and knockdown on the proliferation and metastasis of NSCLC cell lines

  • Authors:
    • Xidan Zhu
    • Gang Tian
    • Jing Quan
    • Peng He
    • Jinbo Liu
  • View Affiliations

  • Published online on: May 29, 2019     https://doi.org/10.3892/ijmm.2019.4213
  • Pages: 643-651
  • Copyright: © Zhu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

The present study aimed to investigate the potential biological functions of microRNA‑340 (miR‑340) in non‑small cell lung cancer (NSCLC) beyond its role as a critical regulator of tumorigenesis and tumor progression. The expression levels of miR‑340 and RAB27B were analyzed by reverse transcription‑quantitative polymerase chain reaction. Subsequently, the protein expression levels of RAB27A, RAB27B, RAB9A, RAB11A and BRAB21 were determined by western blot analysis. The expression levels of the aforementioned proteins in NSCLC tissues were analyzed by immunohistochemistry. RAB27B, as a potential target of miR‑340 was investigated via a dual‑luciferase reporter assay. The proliferative ability of PC9, A549 and BEAS‑2B cells was detected with a Cell Counting kit‑8 assay, while the migration and invasion of the NSCLC cells were analyzed using a Transwell assay. The results revealed that the expression levels of miR‑340 in the NSCLC cells were significantly decreased compared with those in normal cells (BEAS‑2B cells). RAB27B was proposed as a potential target gene of miR‑340, and its expression was notably increased in the NSCLC cells. miR‑340 overexpression inhibited the migration and invasion of the NSCLC cells by targeting RAB27B, while the knockdown of miR‑340 exerted opposite effects. On the whole, these findings indicate that the miR‑340/RAB27B axis may be actively involved in the occurrence of NSCLC. Thus, miR‑340 and RAB27B may be novel therapeutic targets for the treatment of NSCLC.

References

1 

Siegel R, Ma J, Zou Z and Jemal A: Cancer statistics, 2014. CA Cancer J Clin. 64:9–29. 2014. View Article : Google Scholar : PubMed/NCBI

2 

Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D and Bray F: Cancer incidence and mortality worldwide: Sources methods and major patterns in GLOBOCAN 2012. Int J Cancer. 136:E359–E386. 2015. View Article : Google Scholar

3 

Rossi A, Maione P, Sacco PC, Sgambato A, Casaluce F, Ferrara ML, Palazzolo G, Ciardiello F and Gridelli C: ALK inhibitors and advanced non-small cell lung cancer (Review). Int J Oncol. 45:499–508. 2014. View Article : Google Scholar : PubMed/NCBI

4 

Raitoharju E, Seppala I, Oksala N, Lyytikainen LP, Raitakari O, Viikari J, Ala-Korpela M, Soininen P, Kangas AJ, Waldenberger M, et al: Blood microRNA profile associates with the levels of serum lipids and metabolites associated with glucose metabolism and insulin resistance and pinpoints pathways underlying metabolic syndrome: The cardiovascular risk in young finns study. Mol Cell Endocrinol. 391:41–49. 2014. View Article : Google Scholar : PubMed/NCBI

5 

Jiang F, Yu Q, Chu Y, Zhu X, Lu W, Liu Q and Wang Q: MicroRNA-98-5p inhibits proliferation and metastasis in non-small cell lung cancer by targeting TGFBR1. Int J Oncol. 54:128–138. 2019.

6 

Tang Q, Li M, Chen L, Bi F and Xia H: miR-200b/c targets the expression of RhoE and inhibits the proliferation and invasion of non-small cell lung cancer cells. Int J Oncol. 53:1732–1742. 2018.PubMed/NCBI

7 

Lujambio A and Lowe SW: The microcosmos of cancer. Nature. 482:347–355. 2012. View Article : Google Scholar : PubMed/NCBI

8 

Othman N and Nagoor NH: Overexpression of miR-361-5p plays an oncogenic role in human lung adenocarcinoma through the regulation of SMAD2. Int J Oncol. 54:306–314. 2019.

9 

Rongxin S, Pengfei L, Li S, Xiaochen J and Yihe H: MicroRNA-340-5p suppresses osteosarcoma development by down-regulating the Wnt/β-catenin signaling pathway via targeting the STAT3 gene. Eur Rev Med Pharmacol Sci. 23:982–991. 2019.PubMed/NCBI

10 

Shi Z, Li Y, Qian X, Hu Y, Liu J, Zhang S and Zhang J: miR-340 inhibits triple-negative breast cancer progression by reversing EZH2 mediated miRNAs dysregulated expressions. J Cancer. 8:3037–3048. 2017. View Article : Google Scholar : PubMed/NCBI

11 

Wei P, Qiao B, Li Q, Han X, Zhang H, Huo Q and Sun J: microRNA-340 suppresses tumorigenic potential of prostate cancer cells by targeting high-mobility group nucleosome-binding domain 5. DNA Cell Biol. 35:33–43. 2016. View Article : Google Scholar

12 

Huang D, Qiu S, Ge R, He L, Li M, Li Y and Peng Y: miR-340 suppresses glioblastoma multiforme. Oncotarget. 6:9257–9270. 2015. View Article : Google Scholar : PubMed/NCBI

13 

Huang T, Zhou Y, Zhang J, Wong CC, Li W, Kwan JSH, Yang R, Chan AKY, Dong Y, Wu F, et al: SRGAP1, a crucial target of miR-340 and miR-124, functions as a potential oncogene in gastric tumorigenesis. Oncogene. 37:1159–1174. 2018. View Article : Google Scholar :

14 

Xie L, Chen Z, Liu H, Guan L, Wang Z and Li W: Effects of miR-340 on hepatocellular carcinoma by targeting the DcR3 gene. Dig Liver Dis. 50:291–296. 2018. View Article : Google Scholar : PubMed/NCBI

15 

Zhao P, Ma W, Hu Z, Zhang Y, Zhang S and Wang Y: Up-regulation of miR-340-5p promotes progression of thyroid cancer by inhibiting BMP4. J Endocrinol Invest. 41:1165–1172. 2018. View Article : Google Scholar : PubMed/NCBI

16 

Chen CP, Sun ZL, Lu X, Wu WX, Guo WL, Lu JJ, Han C, Huang JQ and Fang Y: miR-340 suppresses cell migration and invasion by targeting MYO10 in breast cancer. Oncol Rep. 35:709–716. 2016. View Article : Google Scholar

17 

Mohammadi-Yeganeh S, Paryan M, Arefian E, Vasei M, Ghanbarian H, Mahdian R, Karimipoor M and Soleimani M: MicroRNA-340 inhibits the migration, invasion, and metastasis of breast cancer cells by targeting Wnt pathway. Tumour Biol. 37:8993–9000. 2016. View Article : Google Scholar : PubMed/NCBI

18 

Maskey N, Li D, Xu H, Song H, Wu C, Hua K, Song J and Fang L: MicroRNA-340 inhibits invasion and metastasis by down-regulating ROCK1 in breast cancer cells. Oncol Lett. 14:2261–2267. 2017. View Article : Google Scholar : PubMed/NCBI

19 

Zhang Z, Wang Y, Zhang W, Li J, Liu W and Lu W: Long non-coding RNA SNHG14 exerts oncogenic functions in non-small cell lung cancer through acting as a miR-340 sponge. Biosci Rep. 39:pii: BSR20180941. 2019.

20 

Qin Y, Zhou X, Huang C, Li L, Liu H, Liang N, Chen Y, Ma D, Han Z, Xu X, et al: Lower miR-340 expression predicts poor prognosis of non-small cell lung cancer and promotes cell proliferation by targeting CDK4. Gene. 675:278–284. 2018. View Article : Google Scholar : PubMed/NCBI

21 

Fernandez S, Risolino M, Mandia N, Talotta F, Soini Y, Incoronato M, Condorelli G, Banfi S and Verde P: miR-340 inhibits tumor cell proliferation and induces apoptosis by targeting multiple negative regulators of p27 in non-small cell lung cancer. Oncogene. 34:3240–3250. 2015. View Article : Google Scholar

22 

Chia WJ and Tang BL: Emerging roles for Rab family GTPases in human cancer. Biochim Biophys Acta. 1795:110–116. 2009.PubMed/NCBI

23 

Bobrie A, Krumeich S, Reyal F, Recchi C, Moita LF, Seabra MC, Ostrowski M and Théry C: Rab27a supports exosome-dependent and -independent mechanisms that modify the tumour microenvironment and can promote tumour progression. Cancer Res. 72:4920–4930. 2012. View Article : Google Scholar : PubMed/NCBI

24 

Zhong K, Chen K, Han L and Li B: MicroRNA-30b/c inhibits non-small cell lung cancer cell proliferation by targeting Rab18. BMC Cancer. 14:7032014. View Article : Google Scholar : PubMed/NCBI

25 

Li W, Mu D, Tian F, Hu Y, Jiang T, Han Y, Chen J, Han G and Li X: Exosomes derived from Rab27a-overexpressing tumor cells elicit efficient induction of antitumor immunity. Mol Med Rep. 8:1876–1882. 2013. View Article : Google Scholar : PubMed/NCBI

26 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods. 25:402–408. 2001. View Article : Google Scholar

27 

Rezaei Z, Sebzari A, Kordi-Tamandani DM and Dastjerdi K: Involvement of the dysregulation of miR-23b-3p, miR-195-5p, miR-656-5p and miR-340-5p in trastuzumab resistance of HER2-positive breast cancer cells and system biology approach to predict their targets involved in resistance. DNA Cell Biol. 38:184–192. 2019. View Article : Google Scholar : PubMed/NCBI

28 

Wu ZS, Wu Q, Wang CQ, Wang XN, Huang J, Zhao JJ, Mao SS, Zhang GH, Xu XC and Zhang N: miR-340 inhibition of breast cancer cell migration and invasion through targeting of oncoprotein c-Met. Cancer. 117:2842–2852. 2011. View Article : Google Scholar : PubMed/NCBI

29 

Hou LK, Yu Y, Xie YG, Wang J, Mao JF, Zhang B, Wang X and Cao XC: miR-340 and ZEB1 negative feedback loop regulates TGF-β-mediated breast cancer progression. Oncotarget. 7:26016–26026. 2016. View Article : Google Scholar : PubMed/NCBI

30 

Li X, Gong X, Chen J, Zhang J, Sun J and Guo M: miR-340 inhibits glioblastoma cell proliferation by suppressing CDK6, cyclin-D1 and cyclin-D2. Biochem Biophys Res Commun. 460:670–677. 2015. View Article : Google Scholar : PubMed/NCBI

31 

Yamashita D, Kondo T, Ohue S, Takahashi H, Ishikawa M, Matoba R, Suehiro S, Kohno S, Harada H, Tanaka J and Ohnishi T: miR340 suppresses the stem-like cell function of glioma-initiating cells by targeting tissue plasminogen activator. Cancer Res. 75:1123–1133. 2015. View Article : Google Scholar : PubMed/NCBI

32 

Takeyama H, Yamamoto H, Yamashita S, Wu X, Takahashi H, Nishimura J, Haraguchi N, Miyake Y, Suzuki R, Murata K, et al: Decreased miR-340 expression in bone marrow is associated with liver metastasis of colorectal cancer. Mol Cancer Ther. 13:976–985. 2014. View Article : Google Scholar : PubMed/NCBI

33 

Li P, Sun Y and Liu Q: MicroRNA-340 induces apoptosis and inhibits metastasis of ovarian cancer cells by inactivation of NF-x03BA;B1. Cell Physiol Biochem. 38:1915–1927. 2016. View Article : Google Scholar : PubMed/NCBI

34 

Huang K, Tang Y, He L and Dai Y: MicroRNA-340 inhibits prostate cancer cell proliferation and metastasis by targeting the MDM2-p53 pathway. Oncol Rep. 35:887–895. 2016. View Article : Google Scholar : PubMed/NCBI

35 

Yu W, Zhang G, Lu B, Li J, Wu Z, Ma H, Wang H and Lian R: miR-340 impedes the progression of laryngeal squamous cell carcinoma by targeting EZH2. Gene. 577:193–201. 2016. View Article : Google Scholar

36 

Zhou X, Wei M and Wang W: MicroRNA-340 suppresses osteosarcoma tumor growth and metastasis by directly targeting ROCK1. Biochem Biophys Res Commun. 437:653–658. 2013. View Article : Google Scholar : PubMed/NCBI

37 

Yin G, Zhou H, Xue Y, Yao B and Zhao W: MicroRNA-340 promotes the tumor growth of human gastric cancer by inhibiting cyclin G2. Oncol Rep. 36:1111–1118. 2016. View Article : Google Scholar : PubMed/NCBI

38 

Li X, Wang H, Ni Q, Tang Z, Ni J, Xu L, Huang H, Ni S and Feng J: Effects of silencing Rab27a gene on biological characteristics and chemosensitivity of non-small cell lung cancer. Oncotarget. 8:94481–94492. 2017.PubMed/NCBI

39 

Wang R, Wang ZX, Yang JS, Pan X, De W and Chen LB: MicroRNA-451 functions as a tumor suppressor in human non-small cell lung cancer by targeting ras-related protein 14 (RAB14). Oncogene. 30:2644–2658. 2011. View Article : Google Scholar : PubMed/NCBI

40 

Dong Q, Fu L, Zhao Y, Du Y, Li Q, Qiu X and Wang E: Rab11a promotes proliferation and invasion through regulation of YAP in non-small cell lung cancer. Oncotarget. 8:27800–27811. 2017.PubMed/NCBI

41 

Imai A, Yoshie S, Ishibashi K, Haga-Tsujimura M, Nashida T, Shimomura H and Fukuda M: EPI64 pr parotid acinar cells otein functions as a physiological GTPase-activating protein for RAB27 protein and regulates amylase release in rat. J Biol Chem. 286:33854–33862. 2011. View Article : Google Scholar : PubMed/NCBI

42 

Akavia UD, Litvin O, Kim J, Sanchez-Garcia F, Kotliar D, Causton HC, Pochanard P, Mozes E, Garraway LA and Pe'er D: An integrated approach to uncover drivers of cancer. Cell. 143:1005–1017. 2010. View Article : Google Scholar : PubMed/NCBI

43 

Peinado H, Alečković M, Lavotshkin S, Matei I, Costa-Silva B, Moreno-Bueno G, Hergueta-Redondo M, Williams C, García-Santos G, Ghajar C, et al: Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat Med. 18:883–891. 2012. View Article : Google Scholar : PubMed/NCBI

44 

Feng F, Jiang Y, Lu H, Lu X, Wang S, Wang L, Wei M, Lu W, Du Z, Ye Z, et al: Rab27A mediated by NF-κB promotes the stemness of colon cancer cells via up-regulation of cytokine secretion. Oncotarget. 7:63342–63351. 2016. View Article : Google Scholar : PubMed/NCBI

45 

Wang H, Zhao Y, Zhang C, Li M, Jiang C and Li Y: Rab27a was identified as a prognostic biomaker by mRNA profiling, correlated with malignant progression and subtype preference in gliomas. PLoS One. 9:e897822014. View Article : Google Scholar : PubMed/NCBI

46 

Shi C, Yang X, Ni Y, Hou N, Xu L, Zhan F, Zhu H, Xiong L and Chen P: High RAB27A expression indicates favorable prognosis in CRC. Diagn Pathol. 10:682015. View Article : Google Scholar : PubMed/NCBI

47 

Hendrix A, Maynard D, Pauwels P, Braems G, Denys H, Van den Broecke R, Lambert J, Van Belle S, Cocquyt V, Gespach C, et al: Effect of the secretory small GTPase RAB27B on breast cancer growth, invasion, and metastasis. J Natl Cancer Inst. 102:866–880. 2010. View Article : Google Scholar : PubMed/NCBI

48 

Worst TS, Meyer Y, Gottschalt M, Weis CA, von Hardenberg J, Frank C, Steidler A, Michel MS and Erben P: RAB27A, RAB27B and VPS36 are downregulated in advanced prostate cancer and show functional relevance in prostate cancer cells. Int J Oncol. 50:920–932. 2017. View Article : Google Scholar : PubMed/NCBI

49 

Yang X, Ye X, Sun L, Gao F, Li Y, Ji X and Wang X, Feng Y and Wang X: Downregulation of serum RAB27B confers improved prognosis and is associated with hepatocellular carcinoma progression through PI3K-AKT-P21 signaling. Oncotarget. 8:61118–61132. 2017.PubMed/NCBI

50 

Bao J, Ni Y, Qin H, Xu L, Ge Z, Zhan F, Zhu H, Zhao J, Zhou X, Tang X and Tang L: Rab27b is a potential predictor for metastasis and prognosis in colorectal cancer. Gastroenterol Res Pract. 2014:9131062014. View Article : Google Scholar

51 

Hendrix A, Braems G, Bracke M, Seabra M, Gahl W, De Wever O and Westbroek W: The secretory small GTPase Rab27B as a marker for breast cancer progression. Oncotarget. 1:304–308. 2010.

52 

Koh HM and Song DH: Prognostic role of Rab27A and Rab27B expression in patients with non-small cell lung carcinoma. Thorac Cancer. 10:143–149. 2019. View Article : Google Scholar

53 

Zhang L, Fan W, Xu L, Mao Q, Chen Y, Mao Y, Xu L and Wang J: Rab27b is a potential indicator for lymph node metastasis and unfavorable prognosis in lung adenocarcinoma. Dis Markers. 2018:72939622018. View Article : Google Scholar

Related Articles

Journal Cover

August 2019
Volume 44 Issue 2

Print ISSN: 1107-3756
Online ISSN:1791-244X

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Zhu, X., Tian, G., Quan, J., He, P., & Liu, J. (2019). Effects of miR‑340 overexpression and knockdown on the proliferation and metastasis of NSCLC cell lines. International Journal of Molecular Medicine, 44, 643-651. https://doi.org/10.3892/ijmm.2019.4213
MLA
Zhu, X., Tian, G., Quan, J., He, P., Liu, J."Effects of miR‑340 overexpression and knockdown on the proliferation and metastasis of NSCLC cell lines". International Journal of Molecular Medicine 44.2 (2019): 643-651.
Chicago
Zhu, X., Tian, G., Quan, J., He, P., Liu, J."Effects of miR‑340 overexpression and knockdown on the proliferation and metastasis of NSCLC cell lines". International Journal of Molecular Medicine 44, no. 2 (2019): 643-651. https://doi.org/10.3892/ijmm.2019.4213