Open Access

miR‑381 functions as a tumor suppressor by targeting ETS1 in pancreatic cancer

  • Authors:
    • Guanen Qiao
    • Jing Li
    • Jun Wang
    • Zhaoyang Wang
    • Wei Bian
  • View Affiliations

  • Published online on: May 23, 2019     https://doi.org/10.3892/ijmm.2019.4206
  • Pages: 593-607
  • Copyright: © Qiao et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Increasing evidence shows that microRNA (miR)‑381 is involved in the carcinogenesis and biologic progression of various types of cancer in humans. However, its potential biologic role and mechanism in pancreatic cancer remain to be elucidated. In the present study, the expression and functional role of miR‑381 in pancreatic cancer were investigated. It was found that miR‑381 was significantly downregulated in pancreatic cancer tissues and cell lines. The biological functions of miR‑381 were examined by measuring cell proliferation, migration, invasion and apoptosis in vitro and in vivo. The miR‑381 target gene and signaling pathway were identified by luciferase activity assay and western blot assay. In vitro experiments confirmed that the enforced expression of miR‑381 markedly suppressed cell proliferation, migration and invasion, and induced apoptosis in pancreatic cancer cells. By contrast, silencing the expression of miR‑381 had the opposite effect. In addition, miR‑381 inhibited xenograft tumor growth in vivo. Furthermore, ETS1 was identified as a direct target of miR‑381, and western blot analysis showed that miR‑381 negatively modulated the expression of ETS1. It was also demonstrated that miR‑381 serves a key role in pancreatic cancer cells through regulating the phosphoinositide 3‑kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) signaling pathway. In conclusion, the data obtained suggested that miR‑381 mediated cell proliferation, migration and invasion by targeting ETS1, partly through PI3K/AKT/mTOR signaling pathway. These results provide novel insights into understanding the potential effects and molecular mechanism of miR‑381 on pancreatic cancer. miR‑381 may serve as a novel potential marker for pancreatic cancer treatment in the future.

References

1 

Bussom S and Saif MW: Methods and rationale for the early detection of pancreatic cancer. Highlights from the '2010 ASCO Gastrointestinal Cancers Symposium' Orlando, FL, USA. January 22-24, 2010. JOP. 11:128–130. 2010.PubMed/NCBI

2 

Siegel R, Naishadham D and Jemal A: Cancer statistics, 2012. CA Cancer J Clin. 62:10–29. 2012. View Article : Google Scholar : PubMed/NCBI

3 

Niedergethmann M, Alves F, Neff JK, Heidrich B, Aramin N, Li L, Pilarsky C, Grützmann R, Allgayer H, Post S and Gretz N: Gene expression profiling of liver metastases and tumour invasion in pancreatic cancer using an orthotopic SCID mouse model. Br J Cancer. 97:1432–1440. 2007. View Article : Google Scholar : PubMed/NCBI

4 

Siegel RL, Miller KD and Jemal A: Cancer statistics, 2015. CA Cancer J Clin. 65:5–29. 2015. View Article : Google Scholar : PubMed/NCBI

5 

Liu H, Zhao J and Lv J: Inhibitory effects of miR-101 overex-pression on cervical cancer SiHa cells. Eur J Gynaecol Oncol. 38:236–240. 2017.

6 

Kasinski AL and Slack FJ: Epigenetics and genetics MicroRNAs en route to the clinic: Progress in validating and targeting microRNAs for cancer therapy. Nat Rev Cancer. 11:849–864. 2011. View Article : Google Scholar : PubMed/NCBI

7 

Li X, Li H, Zhang R and Liu J and Liu J: MicroRNA-449a inhibits proliferation and induces apoptosis by directly repressing E2F3 in gastric cancer. Cell Physiol Biochem. 35:2033–2042. 2015. View Article : Google Scholar : PubMed/NCBI

8 

Yang C, Ning S, Li Z, Qin X and Xu W: miR-22 is down-regulated in esophageal squamous cell carcinoma and inhibits cell migration and invasion. Cancer Cell Int. 14:1382014. View Article : Google Scholar : PubMed/NCBI

9 

Calin GA, Liu CG, Sevignani C, Ferracin M, Felli N, Dumitru CD, Shimizu M, Cimmino A, Zupo S, Dono M, et al: MicroRNA profiling reveals distinct signatures in B cell chronic lymphocytic leukemias. Proc Natl Acad Sci USA. 101:11755–11760. 2004. View Article : Google Scholar : PubMed/NCBI

10 

Calin GA and Croce CM: MicroRNA signatures in human cancers. Nat Rev Cancer. 6:857–866. 2006. View Article : Google Scholar : PubMed/NCBI

11 

Ming J, Zhou Y, Du J, Fan S, Pan B, Wang Y, Fan L and Jiang J: miR-381suppresses C/EBPα-dependent Cx43 expression in breast cancer cells. Biosci Rep. 35:2015. View Article : Google Scholar

12 

Xia B, Li H, Yang S, Liu T and Lou G: MiR-381 inhibits epithelial ovarian cancer malignancy via YY1 suppression. Tumour Biol. 37:9157–9167. 2016. View Article : Google Scholar : PubMed/NCBI

13 

Li Y, Zhao C, Yu Z, Chen J, She X, Li P, Liu C, Zhang Y, Feng J, Fu H, et al: Low expression of miR-381 is a favorite prognosis factor and enhances the chemosensitivity of osteosarcoma. Oncotarget. 7:68585–68596. 2016.PubMed/NCBI

14 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001. View Article : Google Scholar

15 

Yang D, Sun Y, Hu L, Zheng H, Ji P, Pecot CV, Zhao Y, Reynolds S, Cheng H, Rupaimoole R, et al: Integrated analyses identify a master microRNA regulatory network for the mesenchymal subtype in serous ovarian cancer. Cancer Cell. 23:186–199. 2013. View Article : Google Scholar : PubMed/NCBI

16 

Urruticoechea A, Smith IE and Dowsett M: Proliferation marker Ki-67 in early breast cancer. J Clin Oncol. 23:7212–7220. 2005. View Article : Google Scholar : PubMed/NCBI

17 

Chang Y, Yan W, He X, Zhang L, Li C, Huang H, Nace G, Geller DA, Lin J and Tsung A: miR-375 inhibits autophagy and reduces viability of hepatocellular carcinoma cells under hypoxic conditions. Gastroenterology. 143:177–187.e8. 2012. View Article : Google Scholar : PubMed/NCBI

18 

Wang P, Zhang J, Zhang L, Zhu Z, Fan J, Chen L, Zhuang L, Luo J, Chen H, Liu L, et al: MicroRNA 23b regulates autophagy associated with radioresistance of pancreatic cancer cells. Gastroenterology. 145:1133–1143.e12. 2013. View Article : Google Scholar : PubMed/NCBI

19 

Du Q, Park KS, Guo Z, He P, Nagashima M, Shao L, Sahai R, Geller DA and Hussain SP: Regulation of human nitric oxide synthase 2 expression by Wnt beta-catenin signaling. Cancer Res. 66:7024–7031. 2006. View Article : Google Scholar : PubMed/NCBI

20 

Jemal A, Siegel R, Xu J and Ward E: Cancer statistics, 2010. CA Cancer J Clin. 60:277–300. 2010. View Article : Google Scholar : PubMed/NCBI

21 

Osada H and Takahashi T: MicroRNAs in biological processes and carcinogenesis. Carcinogenesis. 28:2–12. 2007. View Article : Google Scholar

22 

Zhang X, Li D, Li M, Ye M, Ding L, Cai H, Fu D and Lv Z: MicroRNA-146a targets PRKCE to modulate papillary thyroid tumor development. Int J Cancer. 134:257–267. 2014. View Article : Google Scholar

23 

Munker R and Calin GA: MicroRNAs and other non-coding RNAs: Implications for cancer patients. MicroRNA Cancer. 1–12. 2013.

24 

Zhang C, Wang C, Chen X, Yang C, Li K, Wang J, Dai J, Hu Z, Zhou X, Chen L, et al: Expression profile of MicroRNAs in Serum: A fingerprint for esophageal squamous cell carcinoma. Clin Chem. 56:1871–1879. 2010. View Article : Google Scholar : PubMed/NCBI

25 

Huang RS, Zheng YL, Zhao J and Chun X: microRNA-381 suppresses the growth and increases cisplatin sensitivity in non-small cell lung cancer cells through inhibition of nuclear factor-κB signaling. Biomed Pharmacother. 98:538–544. 2018. View Article : Google Scholar

26 

Zhang M, Huang S and Long D: MiR-381 inhibits migration and invasion in human gastric carcinoma through downregulatedting SOX4. Oncol Lett. 14:3760–3766. 2017. View Article : Google Scholar : PubMed/NCBI

27 

Yang X, Ruan H, Hu X, Cao A and Song L: miR-381-3p suppresses the proliferation of oral squamous cell carcinoma cells by directly targeting FGFR2. Am J Cancer Res. 7:913–922. 2017.PubMed/NCBI

28 

Xue Y, Xu W, Zhao W, Wang W, Zhang D and Wu P: miR-381 inhibited breast cancer cells proliferation, epithelial-to-mesen-chymal transition and metastasis by targeting CXCR4. Biomed Pharmacother. 86:426–433. 2017. View Article : Google Scholar

29 

Zhang Q, Zhao S, Pang X and Chi B: MicroRNA-381 suppresses cell growth and invasion by targeting the liver receptor homolog-1 in hepatocellular carcinoma. Oncol Rep. 35:1831–1840. 2016. View Article : Google Scholar

30 

Liao H, Pan Y, Pan Y, Shen J, Qi Q, Zhong L, Han W, Wang Q and Jiang Y: MicroRNA-874 is downregulated in cervical cancer and inhibits cancer progression by directly targeting ETS1. Oncol Rep. 40:2389–2398. 2018.PubMed/NCBI

31 

Buggy Y, Maguire TM, McGreal G, McDermott E, Hill AD, O'Higgins N and Duffy MJ: Overexpression of the Ets-1 transcription factor in human breast cancer. Br J Cancer. 91:1308–1315. 2004. View Article : Google Scholar : PubMed/NCBI

32 

Yu Y, Zhang YC, Zhang WZ, Shen LS, Hertzog P, Wilson TJ and Xu DK: Ets1 as a marker of malignant potential in gastric carcinoma. World J Gastroenterol. 9:2154–2159. 2003. View Article : Google Scholar : PubMed/NCBI

33 

Suzuki H, Romano-Spica V, Papas TS and Bhat NK: ETS1 suppresses tumorigenicity of human colon cancer cells. Proc Natl Acad Sci USA. 92:4442–4446. 1995. View Article : Google Scholar : PubMed/NCBI

34 

Fresno Vara JA, Casado E, de Castro J, Cejas P, Belda-Iniesta C and González-Barón M: PI3K/Akt signalling pathway and cancer. Cancer Treat Rev. 30:193–204. 1995. View Article : Google Scholar

35 

Martini M, De Santis MC, Braccini L, Gulluni F and Hirsch E: PI3K/AKT signaling pathway and cancer: An updated review. Ann Med. 46:372–383. 2014. View Article : Google Scholar : PubMed/NCBI

36 

Toker A and Cantley LC: Signalling through the lipid products of phosphoinositide-3-OH kinase. Nature. 387:673–676. 1997. View Article : Google Scholar : PubMed/NCBI

37 

Cantley LC and Neel BG: New insights into tumor suppression: PTEN suppresses tumor formation by restraining the phosphoinositide 3-kinase/AKT pathway. Proc Natl Acad Sci USA. 96:4240–4245. 1999. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

August 2019
Volume 44 Issue 2

Print ISSN: 1107-3756
Online ISSN:1791-244X

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Qiao, G., Li, J., Wang, J., Wang, Z., & Bian, W. (2019). miR‑381 functions as a tumor suppressor by targeting ETS1 in pancreatic cancer. International Journal of Molecular Medicine, 44, 593-607. https://doi.org/10.3892/ijmm.2019.4206
MLA
Qiao, G., Li, J., Wang, J., Wang, Z., Bian, W."miR‑381 functions as a tumor suppressor by targeting ETS1 in pancreatic cancer". International Journal of Molecular Medicine 44.2 (2019): 593-607.
Chicago
Qiao, G., Li, J., Wang, J., Wang, Z., Bian, W."miR‑381 functions as a tumor suppressor by targeting ETS1 in pancreatic cancer". International Journal of Molecular Medicine 44, no. 2 (2019): 593-607. https://doi.org/10.3892/ijmm.2019.4206