Open Access

Exogenous H2S mitigates myocardial fibrosis in diabetic rats through suppression of the canonical Wnt pathway

  • Authors:
    • Rui Yang
    • Qiang Jia
    • Shan‑Feng Ma
    • Ya Wang
    • Shomaila Mehmood
    • Yan Chen
  • View Affiliations

  • Published online on: June 10, 2019     https://doi.org/10.3892/ijmm.2019.4237
  • Pages: 549-558
  • Copyright: © Yang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Hydrogen sulfide (H2S) has antifibrotic activity in the kidneys, heart, lungs, and other organs. The present study investigated the protective activity of exogenous H2S against myocardial fibrosis in a rat model of diabetes. Animals were assigned to normal control, diabetes mellitus (DM), DM + sodium hydrosulfide (NaHS; DM + NaHS) and NaHS groups. Fasting blood glucose (FBG), cardiac function and hydroxyproline were monitored. Heart histomorphology and ultrastructure were additionally evaluated. Wnt1‑inducible signaling pathway protein (WISP)‑1 protein expression in the myocardium was determined by immunohistochemical staining. Matrix metalloprotease (MMP)‑2, tissue inhibitor of metalloproteinase (TIMP)‑2, collagens, and canonical Wnt and transforming growth factor (TGF)‑β1/SMAD family member 3 (Smad3) pathway‑related proteins were assessed by western blotting. Cardiac function was decreased, and myocardial injury, hypertrophy and fibrosis were increased in the diabetes model rats. MMP‑2 expression was decreased, and the expressions of WISP‑1, TIMP‑2, collagens, and canonical Wnt and TGF‑β1/Smad3 pathway‑related proteins were increased in the myocardia of the diabetes model rats. The present results indicated that the canonical Wnt pathway promoted diabetic myocardial fibrosis by upregulating the TGF‑β1/Smad3 pathway. Except for FBG, exogenous H2S ameliorated the changes in diabetes‑associated indices in rats in the DM + NaHS group. The results are consistent with H2S protection of streptozotocin‑induced myocardial fibrosis in the diabetes model rats by downregulation of the canonical Wnt and TGF‑β1/Smad3 pathway and decreased myocardial collagen deposition.

References

1 

Gilca GE, Stefanescu G, Badulescu O, Tanase DM, Bararu I and Ciocoiu M: Diabetic cardiomyopathy: Current approach and potential diagnostic and therapeutic targets. J Diabetes Res. 2017:13102652017. View Article : Google Scholar : PubMed/NCBI

2 

Zou C, Liu X, Xie R, Bao Y, Jin Q, Jia X, Li L and Liu R: Deferiprone attenuates inflammation and myocardial fibrosis in diabetic cardiomyopathy rats. Biochem Biophys Res Commun. 486:930–936. 2017. View Article : Google Scholar : PubMed/NCBI

3 

Moore-Morris T, Guimarães-Camboa N, Yutzey KE, Pucéat M and Evans SM: Cardiac fibroblasts: From development to heart failure. J Mol Med (Berl). 93:823–830. 2015. View Article : Google Scholar

4 

Deb A and Ubil E: Cardiac fibroblast in development and wound healing. J Mol Cell Cardiol. 70:47–55. 2014. View Article : Google Scholar : PubMed/NCBI

5 

Su SA, Yang D, Wu Y, Xie Y, Zhu W, Cai Z, Shen J, Fu Z, Wang Y, Jia L, et al: EphrinB2 regulates cardiac fibrosis through modulating the interaction of Stat3 and TGF-β/Smad3 signaling. Circ Res. 121:617–627. 2017. View Article : Google Scholar : PubMed/NCBI

6 

Han A, Lu Y, Zheng Q, Zhang J, Zhao Y, Zhao M and Cui X: Qiliqiangxin attenuates cardiac remodeling via inhibition of TGF-β1/Smad3 and NF-κB signaling pathways in a rat model of myocardial infarction. Cell Physiol Biochem. 45:1797–1806. 2018. View Article : Google Scholar

7 

Li X, Han D, Tian Z, Gao B, Fan M, Li C, Li X, Wang Y, Ma S and Cao F: Activation of cannabinoid receptor type II by AM1241 ameliorates myocardial fibrosis via Nrf2-mediated inhibition of TGF-β1/Smad3 pathway in myocardial infarction mice. Cell Physiol Biochem. 39:1521–1536. 2016. View Article : Google Scholar

8 

Wang Y, Li YP, Paulson C, Shao JZ, Zhang X, Wu M and Chen W: Wnt and the wnt signaling pathway in bone development and disease. Front Biosci (Landmark Ed). 19:379–407. 2014. View Article : Google Scholar

9 

Kim W, Kim M and Jho EH: Wnt/β-catenin signalling: From plasma membrane to nucleus. Biochem J. 450:9–21. 2013. View Article : Google Scholar : PubMed/NCBI

10 

Angers S and Moon RT: Proximal events in wnt signal transduction. Nat Rev Mol Cell Biol. 10:468–477. 2009. View Article : Google Scholar : PubMed/NCBI

11 

Tao H, Yang JJ, Shi KH and Li J: Wnt signaling pathway in cardiac fibrosis: New insights and directions. Metabolism. 65:30–40. 2016. View Article : Google Scholar : PubMed/NCBI

12 

Xu L, Corcoran RB, Welsh JW, Pennica D and Levine AJ: WISP-1 is a wnt-1- and beta-catenin-responsive oncogene. Genes Dev. 14:585–595. 2000.PubMed/NCBI

13 

Colston JT, de la Rosa SD, Koehler M, Gonzales K, Mestril R, Freeman GL, Bailey SR and Chandrasekar B: Wnt-induced secreted protein-1 is a prohypertrophic and profibrotic growth factor. Am J Physiol Heart Circ Physiol. 293:H1839–H1846. 2007. View Article : Google Scholar : PubMed/NCBI

14 

Działo E, Tkacz K and Błyszczuk P: Crosstalk between the TGF-β and WNT signalling pathways during cardiac fibro-genesis. Acta Biochim Pol. 65:341–349. 2018. View Article : Google Scholar

15 

Blyszczuk P, Müller-Edenborn B, Valenta T, Osto E, Stellato M, Behnke S, Glatz K, Basler K, Lüscher TF, Distler O, et al: Transforming growth factor-β-dependent wnt secretion controls myofibroblast formation and myocardial fibrosis progression in experimental autoimmune myocarditis. Eur Heart J. 38:1413–1425. 2017.

16 

Lal H, Ahmad F, Zhou J, Yu JE, Vagnozzi RJ, Guo Y, Yu D, Tsai EJ, Woodgett J, Gao E and Force T: Cardiac fibroblast glycogen synthase kinase-3β regulates ventricular remodeling and dysfunction in ischemic heart. Circulation. 130:419–430. 2014. View Article : Google Scholar : PubMed/NCBI

17 

Beltowski J: Hydrogen sulfide in pharmacology and medicine-an update. Pharmacol Rep. 67:647–658. 2015. View Article : Google Scholar

18 

Salloum FN: Hydrogen sulfide and cardioprotection-mechanistic insights and clinical translatability. Pharmacol Ther. 152:11–17. 2015. View Article : Google Scholar : PubMed/NCBI

19 

Su YW, Liang C, Jin HF, Tang XY, Han W, Chai LJ, Zhang CY, Geng B, Tang CS and Du JB: Hydrogen sulfide regulates cardiac function and structure in adriamycin-induced cardiomyopathy. Circ J. 73:741–749. 2009. View Article : Google Scholar : PubMed/NCBI

20 

Sun L, Jin H, Chen S, Sun L, Huang Y, Liu J, Li Z, Zhao M, Sun Y, Tang C, et al: Hydrogen sulfide alleviates myocardial collagen remodeling in association with inhibition of TGF-β/Smad signaling pathway in spontaneously hypertensive rats. Mol Med. 20:503–515. 2015. View Article : Google Scholar :

21 

Yang R, Jia Q, Liu XF, Wang YY and Ma SF: Effects of hydrogen sulfide on inducible nitric oxide synthase activity and expression of cardiomyocytes in diabetic rats. Mol Med Rep. 16:5277–5284. 2017. View Article : Google Scholar : PubMed/NCBI

22 

Jia Q, Yang R, Liu XF, Wang QY, Lu HY and Ma SF: Sodium hydrosulfide attenuates myocardial injury through activating thioredoxin system in diabetic rats. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi. 33:1385–1391. 2017.In Chinese. PubMed/NCBI

23 

Jia Q, Yang R, Liu XF, Ma SF and Wang L: Genistein attenuates renal fibrosis in streptozotocin-induced diabetic rats. Mol Med Rep. 19:423–431. 2019.

24 

Ward ML and Crossman DJ: Mechanisms underlying the impaired contractility of diabetic cardiomyopathy. World J Cardiol. 6:577–584. 2014. View Article : Google Scholar : PubMed/NCBI

25 

Miki T, Yuda S, Kouzu H and Miura T: Diabetic cardiomyopathy: Pathophysiology and clinical features. Heart Fail Rev. 18:149–166. 2013. View Article : Google Scholar :

26 

Yang R, Jia Q, Liu XF and Ma SF: Effect of genistein on myocardial fibrosis in diabetic rats and its mechanism. Mol Med Rep. 17:2929–2936. 2018.

27 

Powell CR, Dillon KM and Matson JB: A review of hydrogen sulfide (H2S) donors: Chemistry and potential therapeutic applications. Biochem Pharmacol. 149:110–123. 2018. View Article : Google Scholar

28 

Qian LL, Liu XY, Chai Q and Wang RX: Hydrogen sulfide in diabetic complications: Focus on molecular mechanisms. Endocr Metab Immune Disord Drug Targets. 18:470–476. 2018. View Article : Google Scholar : PubMed/NCBI

29 

Calvert JW, Coetzee WA and Lefer DJ: Novel insights into hydrogen sulfide-mediated cytoprotection. Antioxid Redox Signal. 12:1203–1217. 2010. View Article : Google Scholar :

30 

Citi V, Piragine E, Testai L, Breschi MC, Calderone V and Martelli A: The role of hydrogen sulfide and H2S-donors in myocardial protection against ischemia/reperfusion injury. Curr Med Chem. 25:4380–4401. 2018. View Article : Google Scholar : PubMed/NCBI

31 

Liu YH, Lu M, Xie ZZ, Hua F, Xie L, Gao JH, Koh YH and Bian JS: Hydrogen sulfide prevents heart failure development via inhibition of renin release from mast cells in isoproterenol-treated rats. Antioxid Redox Signal. 20:759–769. 2014. View Article : Google Scholar

32 

Zhou X, An G and Lu X: Hydrogen sulfide attenuates the development of diabetic cardiomyopathy. Clin Sci (Lond). 128:325–335. 2015. View Article : Google Scholar

33 

Liu M, Li Y, Liang B, Li Z, Jiang Z, Chu C and Yang J: Hydrogen sulfide attenuates myocardial fibrosis in diabetic rats through the JAK/STAT signaling pathway. Int J Mol Med. 41:1867–1876. 2018.PubMed/NCBI

34 

Pistocchi A, Fazio G, Cereda A, Ferrari L, Bettini LR, Messina G, Cotelli F, Biondi A, Selicorni A and Massa V: Cornelia de lange syndrome: NIPBL haploinsufficiency downregulates canonical Wnt pathway in zebrafish embryos and patients fibroblasts. Cell Death Dis. 4:e8662013. View Article : Google Scholar : PubMed/NCBI

35 

Demunter A, Libbrecht L, Degreef H, De Wolf-Peeters C and van den Oord JJ: Loss of membranous expression of beta-catenin is associated with tumor progression in cutaneous melanoma and rarely caused by exon 3 mutations. Mod Pathol. 15:454–461. 2002. View Article : Google Scholar : PubMed/NCBI

36 

Shi J, Li F, Luo M, Wei J and Liu X: Distinct roles of Wnt/β-catenin signaling in the pathogenesis of chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis. Mediators Inflamm. 2017:35205812017. View Article : Google Scholar

37 

Zhao X, Hua Y, Chen H, Yang H, Zhang T, Huang G, Fan H, Tan Z, Huang X, Liu B and Zhou Y: Aldehyde dehydrogenase-2 protects against myocardial infarction-related cardiac fibrosis through modulation of the Wnt/β-catenin signaling pathway. Ther Clin Risk Manag. 11:1371–1381. 2015. View Article : Google Scholar :

38 

Ji XK, Xie YK, Zhong JQ, Xu QG, Zeng QQ, Wang Y, Zhang QY and Shan YF: GSK-3β suppresses the proliferation of rat hepatic oval cells through modulating Wnt/β-catenin signaling pathway. Acta Pharmacol Sin. 36:334–342. 2015. View Article : Google Scholar : PubMed/NCBI

39 

Bergmann C, Akhmetshina A, Dees C, Palumbo K, Zerr P, Beyer C, Zwerina J, Distler O, Schett G and Distler JH: Inhibition of glycogen synthase kinase 3β induces dermal fibrosis by activation of the canonical Wnt pathway. Ann Rheum Dis. 70:2191–2198. 2011. View Article : Google Scholar : PubMed/NCBI

40 

Chattopadhyay M, Nath N, Kodela R, Sobocki T, Metkar S, Gan ZY and Kashfi K: Hydrogen sulfide-releasing aspirin inhibits the growth of leukemic Jurkat cells and modulates β-catenin expression. Leuk Res. 37:1302–1308. 2013. View Article : Google Scholar : PubMed/NCBI

41 

Liu C, Xu X, Gao J, Zhang T and Yang Z: Hydrogen sulfide prevents synaptic plasticity from VD-induced damage via Akt/GSK-3β pathway and notch signaling pathway in rats. Mol Neurobiol. 53:4159–4172. 2016. View Article : Google Scholar

42 

Qu Y, Zhang L, Kang Z, Jiang W and Lv C: Ponatinib ameliorates pulmonary fibrosis by suppressing TGF-β1/Smad3 pathway. Pulm Pharmacol Ther. 34:1–7. 2015. View Article : Google Scholar : PubMed/NCBI

43 

Jin Z, Gu C, Tian F, Jia Z and Yang J: NDRG2 knockdown promotes fibrosis in renal tubular epithelial cells through TGF-β1/Smad3 pathway. Cell Tissue Res. 369:603–610. 2017. View Article : Google Scholar : PubMed/NCBI

44 

Hasan IH, El-Desouky MA, Hozayen WG and Abd el Aziz GM: Protective effect of zingiber officinale against CCl4-induced liver fibrosis is mediated through downregulating the TGF-β1/Smad3 and NF-kB/IkB pathways. Pharmacology. 97:1–9. 2016. View Article : Google Scholar

45 

Wang XT, Gong Y, Zhou B, Yang JJ, Cheng Y, Zhao JG and Qi MY: Ursolic acid ameliorates oxidative stress, inflammation and fibrosis in diabetic cardiomyopathy rats. Biomed Pharmacother. 97:1461–1467. 2018. View Article : Google Scholar

46 

Westermann D, Rutschow S, Jager S, Linderer A, Anker S, Riad A, Unger T, Schultheiss HP, Pauschinger M and Tschöpe C: Contributions of inflammation and cardiac matrix metalloproteinase activity to cardiac failure in diabetic cardiomyopathy: The role of angiotensin type 1 receptor antagonism. Diabetes. 56:641–646. 2007. View Article : Google Scholar : PubMed/NCBI

47 

Dong B, Yu QT, Dai HY, Gao YY, Zhou ZL, Zhang L, Jiang H, Gao F, Li SY, Zhang YH, et al: Angiotensin-converting enzyme-2 overexpression improves left ventricular remodeling and function in a rat model of diabetic cardiomyopathy. J Am Coll Cardiol. 59:739–747. 2012. View Article : Google Scholar : PubMed/NCBI

48 

Xiao T, Zeng O, Luo J, Wu Z, Li F and Yang J: Effects of hydrogen sulfide on myocardial fibrosis in diabetic rats: Changes in matrix metalloproteinases parameters. Biomed Mater Eng. 26(Suppl 1): S2033–S2039. 2015.PubMed/NCBI

49 

Li CJ, Lv L, Li H and Yu DM: Cardiac fibrosis and dysfunction in experimental diabetic cardiomyopathy are ameliorated by alpha-lipoic acid. Cardiovasc Diabetol. 11:732012. View Article : Google Scholar : PubMed/NCBI

50 

Guo Y, Gupte M, Umbarkar P, Singh AP, Sui JY, Force T and Lal H: Entanglement of GSK-3β, β-catenin and TGF-β1 signaling network to regulate myocardial fibrosis. J Mol Cell Cardiol. 110:109–120. 2017. View Article : Google Scholar : PubMed/NCBI

51 

Guo X, Ramirez A, Waddell DS, Li Z, Liu X and Wang XF: Axin and GSK3-control Smad3 protein stability and modulate TGF-signaling. Genes Dev. 22:106–120. 2008. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

August 2019
Volume 44 Issue 2

Print ISSN: 1107-3756
Online ISSN:1791-244X

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Yang, R., Jia, Q., Ma, S., Wang, Y., Mehmood, S., & Chen, Y. (2019). Exogenous H2S mitigates myocardial fibrosis in diabetic rats through suppression of the canonical Wnt pathway. International Journal of Molecular Medicine, 44, 549-558. https://doi.org/10.3892/ijmm.2019.4237
MLA
Yang, R., Jia, Q., Ma, S., Wang, Y., Mehmood, S., Chen, Y."Exogenous H2S mitigates myocardial fibrosis in diabetic rats through suppression of the canonical Wnt pathway". International Journal of Molecular Medicine 44.2 (2019): 549-558.
Chicago
Yang, R., Jia, Q., Ma, S., Wang, Y., Mehmood, S., Chen, Y."Exogenous H2S mitigates myocardial fibrosis in diabetic rats through suppression of the canonical Wnt pathway". International Journal of Molecular Medicine 44, no. 2 (2019): 549-558. https://doi.org/10.3892/ijmm.2019.4237