Open Access

Investigating the regulatory role of ORMDL3 in airway barrier dysfunction using in vivo and in vitro models

  • Authors:
    • Ruixue Yang
    • Min Tan
    • Jianya Xu
    • Xia Zhao
  • View Affiliations

  • Published online on: June 6, 2019     https://doi.org/10.3892/ijmm.2019.4233
  • Pages: 535-548
  • Copyright: © Yang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

The airway epithelium (AE) is the main protective barrier between the host and external environmental factors causing asthma. Allergens or pathogens induce AE dysfunction, including epithelial permeability alteration, trans‑epithelial electrical resistance (TEER) reduction, upregulation of inflammatory mediators and downregulation of junctional complex molecules. Orosomucoid‑like protein isoform 3 (ORMDL3), a gene closely associated with childhood onset asthma, is involved in airway inflammation and remodeling. It was hypothesized that ORMDL3 plays an important role in regulating AE barrier function. In vivo [chronic asthma induced by ovalbumin‑respiratory syncytial virus (OVA‑RSV)] in mice) and in vitro (human bronchial epithelial cells and 16HBE cells) models were used to assess ORMDL3's role in AE function regulation, evaluating paracellular permeability, TEER and the expression levels of junctional complex molecules. The effects of ORMDL3 on the extracellular signal‑regulated protein kinase (ERK) pathway were determined. In mice with OVA‑RSV induced chronic asthma, ORMDL3 and sphingosine kinase 1 (SPHK1) were upregulated whereas the junction related proteins Claudin‑18 and E‑cadherin were downregulated. Overexpression of ORMDL3 resulted in decreased TEER, downregulation of junctional complex molecules and induced epithelial permeability. In contrast, ORMDL3 inhibition showed the opposite effects. In 16HBE cells, ORMDL3 overexpression induced SPHK1 distribution and activity, while SPHK1 inhibition resulted in increased TEER upon administration of an ORMDL3 agonist or ORMDL3 overexpression. In addition, ERK activation occurred downstream of SPHK1 activation in 16HBE cells. High levels of ORMDL3 result in damaged AE barrier function by inducing the SPHK1/ERK pathway.

References

1 

Global Initiative for Asthma: Global strategy for asthma management and prevention. 2017.

2 

Martinez FD and Vercelli D: Asthma Lancet. 382:1360–1372. 2013. View Article : Google Scholar

3 

McGarvey LP, Butler CA, Stokesberry S, Polley L, McQuaid S, Abdullah H, Ashraf S, McGahon MK, Curtis TM, Arron J, et al: Increased expression of bronchial epithelial transient receptor potential vanilloid 1 channels in patients with severe asthma. J Allergy Clin Immunol. 133:704–712.e4. 2014. View Article : Google Scholar

4 

Hackett TL and Knight DA: The role of epithelial injury and repair in the origins of asthma. Curr Opin Allergy Clin Immunol. 7:63–68. 2007. View Article : Google Scholar : PubMed/NCBI

5 

Chung KF: Intrinsic differences of the airway epithelium in childhood allergic asthma. Am J Respir Crit Care Med. 174:1066–1067. 2006. View Article : Google Scholar : PubMed/NCBI

6 

Xiao C, Puddicombe SM, Field S, Haywood J, Broughton-Head V, Puxeddu I, Haitchi HM, Vernon-Wilson E, Sammut D, Bedke N, et al: Defective epithelial barrier function in asthma. J Allergy Clin Immunol. 128:549–556. e1–e12. 2011. View Article : Google Scholar : PubMed/NCBI

7 

Kicic A, Sutanto EN, Stevens PT, Knight DA and Stick SM: Intrinsic biochemical and functional differences in bronchial epithelial cells of children with asthma. Am J Respir Crit Care Med. 174:1110–1118. 2006. View Article : Google Scholar : PubMed/NCBI

8 

Moffatt MF: Genes in asthma: New genes and new ways. Curr Opin Allergy Clin Immunol. 8:411–417. 2008. View Article : Google Scholar : PubMed/NCBI

9 

Miller M, Rosenthal P, Beppu A, Mueller JL, Hoffman HM, Tam AB, Doherty TA, McGeough MD, Pena CA, Suzukawa M, et al: ORMDL3 transgenic mice have increased airway remodeling and airway responsiveness characteristic of asthma. J Immunol. 192:3475–3487. 2014. View Article : Google Scholar : PubMed/NCBI

10 

Hjelmqvist L, Tuson M, Marfany G, Herrero E, Balcells S and Gonzàlez-Duarte R: ORMDL proteins are a conserved new family of endoplasmic reticulum membrane proteins. Genome Biol. 3:RESEARCH00272002. View Article : Google Scholar : PubMed/NCBI

11 

Miller M, Tam AB, Cho JY, Doherty TA, Pham A, Khorram N, Rosenthal P, Mueller JL, Hoffman HM, Suzukawa M, et al: ORMDL3 is an inducible lung epithelial gene regulating metal-loproteases, chemokines, OAS, and ATF6. Proc Natl Acad Sci USA. 109:16648–16653. 2012. View Article : Google Scholar

12 

Carreras-Sureda A, Cantero-Recasens G, Rubio-Moscardo F, Kiefer K, Peinelt C, Niemeyer BA, Valverde MA and Vicente R: ORMDL3 modulates store-operated calcium entry and lymphocyte activation. Hum Mol Genet. 22:519–530. 2013. View Article : Google Scholar

13 

Worgall TS, Veerappan A, Sung B, Kim BI, Weiner E, Bholah R, Silver RB, Jiang XC and Worgall S: Impaired sphingolipid synthesis in the respiratory tract induces airway hyperreactivity. Sci Transl Med. 5:186ra672013. View Article : Google Scholar : PubMed/NCBI

14 

Levy BD: Sphingolipids and susceptibility to asthma. N Engl J Med. 369:976–978. 2013. View Article : Google Scholar : PubMed/NCBI

15 

Young MM, Kester M and Wang HG: Sphingolipids: Regulators of crosstalk between apoptosis and autophagy. J Lipid Res. 54:5–19. 2013. View Article : Google Scholar :

16 

Schiefler C, Piontek G, Doescher J, Schuettler D, Mißlbeck M, Rudelius M, Haug A, Reiter R, Brockhoff G and Pickhard A: Inhibition of SphK1 reduces radiation-induced migration and enhances sensitivity to cetuximab treatment by affecting the EGFR/SphK1 crosstalk. Oncotarget. 5:9877–9888. 2014. View Article : Google Scholar : PubMed/NCBI

17 

Tamashiro PM, Furuya H, Shimizu Y and Kawamori T: Sphingosine kinase 1 mediates head & neck squamous cell carcinoma invasion through sphingosine 1-phosphate receptor 1. Cancer Cell Int. 14:762014. View Article : Google Scholar :

18 

Oyeniran C, Sturgill JL, Hait NC, Huang WC, Avni D, Maceyka M, Newton J, Allegood JC, Montpetit A, Conrad DH, et al: Aberrant ORM (yeast)-like protein isoform 3 (ORMDL3) expression dysregulates ceramide homeostasis in cells and ceramide exacerbates allergic asthma in mice. J Allergy Clin Immunol. 136:1035–1046.e6. 2015. View Article : Google Scholar : PubMed/NCBI

19 

Natarajan V, Ha AW, Dong Y, Reddy NM, Ebenezer DL, Kanteti P, Reddy SP, Usha Raj J, Lei Z, Maienschein-Cline M, et al: Expression profiling of genes regulated by sphingosine kinase1 signaling in a murine model of hyperoxia induced neonatal bronchopulmonary dysplasia. BMC Genomics. 18:6642017. View Article : Google Scholar : PubMed/NCBI

20 

Nishiuma T, Nishimura Y, Okada T, Kuramoto E, Kotani Y, Jahangeer S and Nakamura S: Inhalation of sphingosine kinase inhibitor attenuates airway inflammation in asthmatic mouse model. Am J Physiol Lung Cell Mol Physiol. 294:L1085–L1093. 2008. View Article : Google Scholar : PubMed/NCBI

21 

Xu CY, Liu SQ, Qin MB, Zhuge CF, Qin L, Qin N, Lai MY and Huang JA: SphK1 modulates cell migration and EMT-related marker expression by regulating the expression of p-FAK in colorectal cancer cells. Int J Mol Med. 39:1277–1284. 2017. View Article : Google Scholar : PubMed/NCBI

22 

Haberberger RV, Tabeling C, Runciman S, Gutbier B, König P, Andratsch M, Schütte H, Suttorp N, Gibbins I and Witzenrath M: Role of sphingosine kinase 1 in allergen-induced pulmonary vascular remodeling and hyperresponsiveness. J Allergy Clin Immunol. 124:933–941. e1–e9. 2009. View Article : Google Scholar : PubMed/NCBI

23 

Sim TY, Harith HH, Tham CL, Md Hashim NF, Shaari K, Sulaiman MR and Israf DA: The protective effects of a synthetic geranyl acetophenone in a cellular model of TNF-α-induced pulmonary epithelial barrier dysfunction. Molecules. 23:pii: E1355. 2018. View Article : Google Scholar

24 

Kono Y, Nishiuma T, Okada T, Kobayashi K, Funada Y, Kotani Y, Jahangeer S, Nakamura S and Nishimura Y: Sphingosine kinase 1 regulates mucin production via ERK phosphorylation. Pulm Pharmacol Ther. 23:36–42. 2010. View Article : Google Scholar

25 

Oskeritzian CA, Alvarez SE, Hait NC, Price MM, Milstien S and Spiegel S: Distinct roles of sphingosine kinases 1 and 2 in human mast-cell functions. Blood. 111:4193–4200. 2008. View Article : Google Scholar : PubMed/NCBI

26 

Price MM, Oskeritzian CA, Falanga YT, Harikumar KB, Allegood JC, Alvarez SE, Conrad D, Ryan JJ, Milstien S and Spiegel S: A specific sphingosine kinase 1 inhibitor attenuates airway hyperresponsiveness and inflammation in a mast cell-dependent murine model of allergic asthma. J Allergy Clin Immunol. 131:501–511.e1. 2013. View Article : Google Scholar

27 

Huang Z, Gao L, Zhao X, Ling H and Chen W: Effect of Gubenfangxiao decoction on respiratory syncytial virus-induced asthma and expression of asthma susceptibility gene orosomucoid 1-like protein 3 in mice. J Tradit Chin Med. 36:101–106. 2016. View Article : Google Scholar : PubMed/NCBI

28 

Page K, Lierl KM, Herman N and Wills-Karp M: Differences in susceptibility to German cockroach frass and its associated proteases in induced allergic inflammation in mice. Respir Res. 8:912007. View Article : Google Scholar : PubMed/NCBI

29 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001. View Article : Google Scholar

30 

Lu Y, Xu JY, Zhang XH and Zhao X: Gu-Ben-Fang-Xiao decoction attenuates sustained airway inflammation by suppressing ER stress response in a murine asthma remission model of respiratory syncytial virus infection. J Ethnopharmacol. 192:496–509. 2016. View Article : Google Scholar : PubMed/NCBI

31 

Xia P, Gamble JR, Wang L, Pitson SM, Moretti PA, Wattenberg BW, D'Andrea RJ and Vadas MA: An oncogenic role of sphingosine kinase. Curr Biol. 10:1527–1530. 2000. View Article : Google Scholar : PubMed/NCBI

32 

Cheng Q and Shang Y: ORMDL3 may participate in the pathogenesis of bronchial epithelial-mesenchymal transition in asthmatic mice with airway remodeling. Mol Med Rep. 17:995–1005. 2018.

33 

Breslow DK, Collins SR, Bodenmiller B, Aebersold R, Simons K, Shevchenko A, Ejsing CS and Weissman JS: Orm family proteins mediate sphingolipid homeostasis. Nature. 463:1048–1053. 2010. View Article : Google Scholar : PubMed/NCBI

34 

Nawijn MC, Hackett TL, Postma DS, van Oosterhout AJ and Heijink IH: E-cadherin: Gatekeeper of airway mucosa and allergic sensitization. Trends Immunol. 32:248–255. 2011. View Article : Google Scholar : PubMed/NCBI

35 

Sweerus K, Lachowicz-Scroggins M, Gordon E, LaFemina M, Huang X, Parikh M, Kanegai C, Fahy JV and Frank JA: Claudin-18 deficiency is associated with airway epithelial barrier dysfunction and asthma. J Allergy Clin Immunol. 139:72–81.e1. 2017. View Article : Google Scholar

36 

Hardyman MA, Wilkinson E, Martin E, Jayasekera NP, Blume C, Swindle EJ, Gozzard N, Holgate ST, Howarth PH, Davies DE and Collins JE: TNF-α-mediated bronchial barrier disruption and regulation by src-family kinase activation. J Allergy Clin Immunol. 132:665–675.e8. 2013. View Article : Google Scholar

37 

Ma TY, Iwamoto GK, Hoa NT, Akotia V, Pedram A, Boivin MA and Said HM: TNF-alpha-induced increase in intestinal epithelial tight junction permeability requires NF-kappa B activation. Am J Physiol Gastrointest Liver Physiol. 286:G367–G376. 2004. View Article : Google Scholar : PubMed/NCBI

38 

Qiu L: Effect of TNF-α on ORMDL3 gene promoter regulation and its possible mechanism. Dissertation. Nanjing Medical University; 2014

39 

Pitson SM, Moretti PA, Zebol JR, Xia P, Gamble JR, Vadas MA, D'Andrea RJ and Wattenberg BW: Expression of a catalytically inactive sphingosine kinase mutant blocks agonist-induced sphingosine kinase activation. A dominant-negative sphingosine kinase. J Biol Chem. 275:33945–33950. 2000. View Article : Google Scholar : PubMed/NCBI

40 

Falsey AR, Hennessey PA, Formica MA, Cox C and Walsh EE: Respiratory syncytial virus infection in elderly and high-risk adults. N Engl J Med. 352:1749–1759. 2005. View Article : Google Scholar : PubMed/NCBI

41 

Krishnamoorthy N, Khare A, Oriss TB, Raundhal M, Morse C, Yarlagadda M, Wenzel SE, Moore ML, Peebles RS Jr, Ray A and Ray P: Early infection with respiratory syncytial virus impairs regulatory T cell function and increases susceptibility to allergic asthma. Nat Med. 18:1525–1530. 2012. View Article : Google Scholar : PubMed/NCBI

42 

Rezaee F, DeSando SA, Ivanov AI, Chapman TJ, Knowlden SA, Beck LA and Georas SN: Sustained protein kinase D activation mediates respiratory syncytial virus-induced airway barrier disruption. J Virol. 87:11088–11095. 2013. View Article : Google Scholar : PubMed/NCBI

43 

Peebles RS Jr, Sheller JR, Johnson JE, Mitchell DB and Graham BS: Respiratory syncytial virus infection prolongs methacholine-induced airway hyperresponsiveness in oval-bumin-sensitized mice. J Med Virol. 57:186–192. 1999. View Article : Google Scholar : PubMed/NCBI

44 

Wawrzyniak P, Wawrzyniak M, Wanke K, Sokolowska M, Bendelja K, Ruckert B, Globinska A, Jakiela B, Kast JI, Idzko M, et al: Regulation of bronchial epithelial barrier integrity by type 2 cytokines and histone deacetylases in asthmatic patients. J Allergy Clin Immunol. 139:93–103. 2017. View Article : Google Scholar

45 

Sugita K, Steer CA, Martinez-Gonzalez I, Altunbulakli C, Morita H, Castro-Giner F, Kubo T, Wawrzyniak P, Rückert B, Sudo K, et al: Type 2 innate lymphoid cells disrupt bronchial epithelial barrier integrity by targeting tight junctions through IL-13 in asthmatic patients. J Allergy Clin Immunol. 141:300–310.e11. 2018. View Article : Google Scholar

46 

Shang VC, Kendall DA and Roberts RE: Δ9-Tetrahydrocannabinol reverses TNFα-induced increase in airway epithelial cell permeability through CB2 receptors. Biochem Pharmacol. 120:63–71. 2016. View Article : Google Scholar : PubMed/NCBI

47 

Hsu KJ and Turvey SE: Functional analysis of the impact of ORMDL3 expression on inflammation and activation of the unfolded protein response in human airway epithelial cells. Allergy Asthma Clin Immunol. 9:42013. View Article : Google Scholar : PubMed/NCBI

48 

Ha SG, Ge XN, Bahaie NS, Kang BN, Rao A, Rao SP and Sriramarao P: ORMDL3 promotes eosinophil trafficking and activation via regulation of integrins and CD48. Nat Commun. 4:24792013. View Article : Google Scholar : PubMed/NCBI

49 

Georas SN and Rezaee F: Epithelial barrier function: At the front line of asthma immunology and allergic airway inflammation. J Allergy Clin Immunol. 134:509–520. 2014. View Article : Google Scholar : PubMed/NCBI

50 

Boussadia O, Kutsch S, Hierholzer A, Delmas V and Kemler R: E-cadherin is a survival factor for the lactating mouse mammary gland. Mech Dev. 115:53–62. 2002. View Article : Google Scholar : PubMed/NCBI

51 

Van den Bossche J and Van Ginderachter JA: E-cadherin: From epithelial glue to immunological regulator. Eur J Immunol. 43:34–37. 2013. View Article : Google Scholar

52 

Soini Y: Claudins in lung diseases. Respir Res. 12:702011. View Article : Google Scholar : PubMed/NCBI

53 

Niimi T, Nagashima K, Ward JM, Minoo P, Zimonjic DB, Popescu NC and Kimura S: Claudin-18, a novel downstream target gene for the T/EBP/NKX2.1 homeodomain transcription factor, encodes lung- and stomach-specific isoforms through alternative splicing. Mol Cell Biol. 21:7380–7390. 2001. View Article : Google Scholar : PubMed/NCBI

54 

Ohta H, Chiba S, Ebina M, Furuse M and Nukiwa T: Altered expression of tight junction molecules in alveolar septa in lung injury and fibrosis. Am J Physiol Lung Cell Mol Physiol. 302:L193–L205. 2012. View Article : Google Scholar

55 

Li G, Flodby P, Luo J, Kage H, Sipos A, Gao D, Ji Y, Beard LL, Marconett CN, DeMaio L, et al: Knockout mice reveal key roles for claudin 18 in alveolar barrier properties and fluid homeo-stasis. Am J Respir Cell Mol Biol. 51:210–222. 2014.PubMed/NCBI

56 

Abe-Yutori M, Chikazawa T, Shibasaki K and Murakami S: Decreased expression of E-cadherin by Porphyromonas gingivalis-lipopolysaccharide attenuates epithelial barrier function. J Periodontal Res. 52:42–50. 2017. View Article : Google Scholar

57 

Montiel M, Quesada J and Jiménez E: Activation of calcium-dependent kinases and epidermal growth factor receptor regulate muscarinic acetylcholine receptor-mediated MAPK/ERK activation in thyroid epithelial cells. Cell Signal. 19:2138–2146. 2007. View Article : Google Scholar : PubMed/NCBI

58 

Roberts PJ and Der CJ: Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer. Oncogene. 26:3291–3310. 2007. View Article : Google Scholar : PubMed/NCBI

59 

Cohen TS, Gray Lawrence G and Margulies SS: Cultured alveolar epithelial cells from septic rats mimic in vivo septic lung. PLoS One. 5:e113222010. View Article : Google Scholar : PubMed/NCBI

60 

Petecchia L, Sabatini F, Usai C, Caci E, Varesio L and Rossi GA: Cytokines induce tight junction disassembly in airway cells via an EGFR-dependent MAPK/ERK1/2-pathway. Lab Invest. 92:1140–1148. 2012. View Article : Google Scholar : PubMed/NCBI

61 

Lai WQ, Goh HH, Bao Z, Wong WS, Melendez AJ and Leung BP: The role of sphingosine kinase in a murine model of allergic asthma. J Immunol. 180:4323–4329. 2008. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

August 2019
Volume 44 Issue 2

Print ISSN: 1107-3756
Online ISSN:1791-244X

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Yang, R., Tan, M., Xu, J., & Zhao, X. (2019). Investigating the regulatory role of ORMDL3 in airway barrier dysfunction using in vivo and in vitro models. International Journal of Molecular Medicine, 44, 535-548. https://doi.org/10.3892/ijmm.2019.4233
MLA
Yang, R., Tan, M., Xu, J., Zhao, X."Investigating the regulatory role of ORMDL3 in airway barrier dysfunction using in vivo and in vitro models". International Journal of Molecular Medicine 44.2 (2019): 535-548.
Chicago
Yang, R., Tan, M., Xu, J., Zhao, X."Investigating the regulatory role of ORMDL3 in airway barrier dysfunction using in vivo and in vitro models". International Journal of Molecular Medicine 44, no. 2 (2019): 535-548. https://doi.org/10.3892/ijmm.2019.4233