Open Access

Rap1 regulates hepatic stellate cell migration through the modulation of RhoA activity in response to TGF‑β1

  • Authors:
    • Mi‑Young Moon
    • Hee‑Jun Kim
    • Mo‑Jong Kim
    • Sunho Uhm
    • Ji‑Won Park
    • Ki‑Tae Suk
    • Jae‑Bong Park
    • Dong‑Jun Kim
    • Sung‑Eun Kim
  • View Affiliations

  • Published online on: May 30, 2019     https://doi.org/10.3892/ijmm.2019.4215
  • Pages: 491-502
  • Copyright: © Moon et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Although the migration of hepatic stellate cells (HSCs) is important for hepatic fibrosis, the regulation of this migration is poorly understood. Notably, transforming growth factor (TGF)‑β1 induces monocyte migration to sites of injury or inflammation during the early phase, but inhibits cell migration during the late phase. In the present study, the role of transforming protein RhoA signaling in TGF‑β1‑induced HSC migration was investigated. TGF‑β1 was found to increase the protein and mRNA levels of smooth muscle actin and collagen type I in HSC‑T6 cells. The level of RhoA‑GTP in TGF‑β1‑stimulated cells was significantly higher than that in control cells. Furthermore, the phosphorylation of cofilin and formation of filamentous actin (F‑actin) were more marked in TGF‑β1‑stimulated cells than in control cells. Additionally, TGF‑β1 induced the activation of nuclear factor‑κB, and the expression of extracellular matrix proteins and several cytokines in HSC‑T6 cells. The active form of Rap1 (Rap1 V12) suppressed RhoA‑GTP levels, whereas the dominant‑negative form of Rap1 (Rap1 N17) augmented RhoA‑GTP levels. Therefore, the data confirmed that Rap1 regulated the activation of RhoA in TGF‑β1‑stimulated HSC‑T6 cells. These findings suggest that TGF‑β1 regulates Rap1, resulting in the suppression of RhoA, activation of and formation of F‑actin during the migration of HSCs.

References

1 

Friedman SL: Mechanisms of hepatic fibrogenesis. Gastroenterology. 134:1655–1669. 2008. View Article : Google Scholar : PubMed/NCBI

2 

Arriazu E, Ruiz de Galarreta M, Cubero FJ, Varela-Rey M, Perez de Obanos MP, Leung TM, Lopategi A, Benedicto A, Abraham-Enachescu I and Nieto N: Extracellular matrix and liver disease. Antioxid Redox Signal. 21:1078–1097. 2014. View Article : Google Scholar :

3 

Yang C, Zeisberg M, Mosterman B, Sudhakar A, Yerramalla U, Holthaus K, Xu L, Eng F, Afdhal N and Kalluri R: Liver fibrosis: Insights into migration of hepatic stellate cells in response to extracellular matrix and growth factors. Gastroenterology. 124:147–159. 2003. View Article : Google Scholar : PubMed/NCBI

4 

Wang XM, Yu DM, McCaughan GW and Gorrell MD: Fibroblast activation protein increases apoptosis, cell adhesion, and migration by the LX-2 human stellate cell line. Hepatology. 42:935–945. 2005. View Article : Google Scholar : PubMed/NCBI

5 

Raftopoulou M and Hall A: Cell migration: Rho GTPases lead the way. Dev Biol. 265:23–32. 2004. View Article : Google Scholar

6 

Nobes CD and Hall A: Rho, rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell. 81:53–62. 1995. View Article : Google Scholar : PubMed/NCBI

7 

Ridley AJ and Hall A: The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors. Cell. 70:389–399. 1992. View Article : Google Scholar : PubMed/NCBI

8 

Nobes CD, Hawkins P, Stephens L and Hall A: Activation of the small GTP-binding proteins rho and rac by growth factor receptors. J Cell Sci. 108:225–233. 1995.PubMed/NCBI

9 

Etienne-Manneville S and Hall A: Rho GTPases in cell biology. Nature. 420:629–635. 2002. View Article : Google Scholar : PubMed/NCBI

10 

Li MO, Wan YY, Sanjabi S, Robertson AK and Flavell RA: Transforming growth factor-beta regulation of immune responses. Annu Rev Immunol. 24:99–146. 2006. View Article : Google Scholar : PubMed/NCBI

11 

Zhang YE: Non-Smad pathways in TGF-beta signaling. Cell Res. 19:128–139. 2009. View Article : Google Scholar :

12 

Edlund S, Landstrom M, Heldin CH and Aspenstrom P: Transforming growth factor-beta-induced mobilization of actin cytoskeleton requires signaling by small GTPases Cdc42 and RhoA. Mol Boil Cell. 13:902–914. 2002. View Article : Google Scholar

13 

Kim JS, Kim JG, Moon MY, Jeon CY, Won HY, Kim HJ, Jeon YJ, Seo JY, Kim JI, Kim J, et al: Transforming growth factor-beta1 regulates macrophage migration via RhoA. Blood. 108:1821–1829. 2006. View Article : Google Scholar : PubMed/NCBI

14 

Papadimitriou E, Kardassis D, Moustakas A and Stournaras C: TGFβ-induced early activation of the small GTPase RhoA is Smad2/3-independent and involves Src and the guanine nucleotide exchange factor Vav2. Cell Physiol Biochem. 28:229–238. 2011. View Article : Google Scholar

15 

Li L, Wang JY, Yang CQ and Jiang W: Effect of RhoA on transforming growth factor β1-induced rat hepatic stellate cell migration. Liver Int. 32:1093–1102. 2012. View Article : Google Scholar : PubMed/NCBI

16 

Yamamoto Y and Gaynor RB: IkappaB kinases: Key regulators of the NF-kappaB pathway. Trends Biochem Sci. 29:72–79. 2004. View Article : Google Scholar : PubMed/NCBI

17 

Kim HJ, Kim JG, Moon MY, Park SH and Park JB: IκB kinase γ/nuclear factor-κB-essential modulator (IKKγ/NEMO) facilitates RhoA GTPase activation, which, in turn, activates Rho-associated KINASE (ROCK) to phosphorylate IKKβ in response to transforming growth factor (TGF)-β1. J Boil Chem. 289:1429–1440. 2014. View Article : Google Scholar

18 

Bos JL, de Bruyn K, Enserink J, Kuiperij B, Rangarajan S, Rehmann H, Riedl J, de Rooij J, van Mansfeld F and Zwartkruis F: The role of Rap1 in integrin-mediated cell adhesion. Biochem Soc Trans. 31:83–86. 2003. View Article : Google Scholar : PubMed/NCBI

19 

Moon MY, Kim HJ, Kim JG, Lee JY, Kim J, Kim SC, Choi IG, Kim PH and Park JB: Small GTPase Rap1 regulates cell migration through regulation of small GTPase RhoA activity in response to transforming growth factor-β1. J Cell Physiol. 228:2119–2126. 2013. View Article : Google Scholar : PubMed/NCBI

20 

Teo H, Ghosh S, Luesch H, Ghosh A, Wong ET, Malik N, Orth A, de Jesus P, Perry AS, Oliver JD, et al: Telomere-independent Rap1 is an IKK adaptor and regulates NF-kappaB-dependent gene expression. Nat Cell Biol. 12:758–767. 2010. View Article : Google Scholar : PubMed/NCBI

21 

Ghosh AS and Tergaonkar V: Telomeres and inflammation: Rap1 joins the ends? Cell Cycle. 9:3834–3835. 2010. View Article : Google Scholar : PubMed/NCBI

22 

Vogel S, Piantedosi R, Frank J, Lalazar A, Rockey DC, Friedman SL and Blaner WS: An immortalized rat liver stellate cell line (HSC-T6): A new cell model for the study of retinoid metabolism in vitro. J Lipid Res. 41:882–893. 2000.PubMed/NCBI

23 

Park J, Kim JS, Jung KC, Lee HJ, Kim JI, Kim J, Lee JY, Park JB and Choi SY: Exoenzyme Tat-C3 inhibits association of zymosan particles, phagocytosis, adhesion, and complement binding in macrophage cells. Mol Cells. 16:216–223. 2003.PubMed/NCBI

24 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001. View Article : Google Scholar

25 

Ellerbroek SM, Wennerberg K and Burridge K: Serine phosphorylation negatively regulates RhoA in vivo. J Biol Chem. 278:19023–19031. 2003. View Article : Google Scholar : PubMed/NCBI

26 

Sit ST and Manser E: Rho GTPases and their role in organizing the actin cytoskeleton. J Cell Sci. 124:679–683. 2011. View Article : Google Scholar : PubMed/NCBI

27 

Spiering D and Hodgson L: Dynamics of the Rho-family small GTPases in actin regulation and motility. Cell Adh Migr. 5:170–180. 2011. View Article : Google Scholar :

28 

Marra F, Arrighi MC, Fazi M, Caligiuri A, Pinzani M, Romanelli RG, Efsen E, Laffi G and Gentilini P: Extracellular signal-regulated kinase activation differentially regulates platelet-derived growth factor's actions in hepatic stellate cells, and is induced by in vivo liver injury in the rat. Hepatology. 30:951–958. 1999. View Article : Google Scholar : PubMed/NCBI

29 

Bataller R and Brenner DA: Liver fibrosis. J Clin Invest. 115:209–218. 2005. View Article : Google Scholar : PubMed/NCBI

30 

Bettermann K, Vucur M, Haybaeck J, Koppe C, Janssen J, Heymann F, Weber A, Weiskirchen R, Liedtke C, Gassler N, et al: TAK1 suppresses a NEMO-dependent but NF-kappaB- independent pathway to liver cancer. Cancer Cell. 17:481–496. 2010. View Article : Google Scholar : PubMed/NCBI

31 

Inokuchi S, Aoyama T, Miura K, Osterreicher CH, Kodama Y, Miyai K, Akira S, Brenner DA and Seki E: Disruption of TAK1 in hepatocytes causes hepatic injury, inflammation, fibrosis, and carcinogenesis. Proc Natl Acad Sci USA. 107:844–849. 2010. View Article : Google Scholar : PubMed/NCBI

32 

Luedde T, Beraza N, Kotsikoris V, van Loo G, Nenci A, De Vos R, Roskams T, Trautwein C and Pasparakis M: Deletion of NEMO/IKKgamma in liver parenchymal cells causes steatohepatitis and hepatocellular carcinoma. Cancer Cell. 11:119–132. 2007. View Article : Google Scholar : PubMed/NCBI

33 

Luedde T and Schwabe RF: NF-κB in the liver-linking injury, fibrosis and hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol. 8:108–118. 2011. View Article : Google Scholar : PubMed/NCBI

34 

Friedman SL: Molecular regulation of hepatic fibrosis, an integrated cellular response to tissue injury. J Biol Chem. 275:2247–2250. 2000. View Article : Google Scholar : PubMed/NCBI

35 

Benyon RC and Arthur MJ: Mechanisms of hepatic fibrosis. J Pediatr Gastroenterol Nutr. 27:75–85. 1998. View Article : Google Scholar : PubMed/NCBI

36 

Lee UE and Friedman SL: Mechanisms of hepatic fibrogenesis. Best Pract Res Clin Gastroenterol. 25:195–206. 2011. View Article : Google Scholar : PubMed/NCBI

37 

Gressner AM, Weiskirchen R, Breitkopf K and Dooley S: Roles of TGF-beta in hepatic fibrosis. Front Biosci. 7:d793–d807. 2002. View Article : Google Scholar : PubMed/NCBI

38 

Breitkopf K, Godoy P, Ciuclan L, Singer MV and Dooley S: TGF-beta/Smad signaling in the injured liver. Z Gastroenterol. 44:57–66. 2006. View Article : Google Scholar : PubMed/NCBI

39 

Friedman SL: Liver fibrosis: From mechanisms to treatment. Gastroenterol Clin Biol. 31:812–814. 2007. View Article : Google Scholar

40 

Ridley AJ: Rho GTPases and cell migration. J Cell Sci. 114:2713–2722. 2001.PubMed/NCBI

41 

Wang W, Eddy R and Condeelis J: The cofilin pathway in breast cancer invasion and metastasis. Nat Rev Cancer. 7:429–440. 2007. View Article : Google Scholar : PubMed/NCBI

42 

DesMarais V, Ghosh M, Eddy R and Condeelis J: Cofilin takes the lead. J Cell Sci. 118:19–26. 2005. View Article : Google Scholar

43 

Iwamoto H, Nakamuta M, Tada S, Sugimoto R, Enjoji M and Nawata H: A p160ROCK-specific inhibitor, Y-27632, attenuates rat hepatic stellate cell growth. J Hepatol. 32:762–770. 2000. View Article : Google Scholar : PubMed/NCBI

44 

Kato M, Iwamoto H, Higashi N, Sugimoto R, Uchimura K, Tada S, Sakai H, Nakamuta M and Nawata H: Role of Rho small GTP binding protein in the regulation of actin cytoskeleton in hepatic stellate cells. J Hepatol. 31:91–99. 1999. View Article : Google Scholar : PubMed/NCBI

45 

Tada S, Iwamoto H, Nakamuta M, Sugimoto R, Enjoji M, Nakashima Y and Nawata H: A selective ROCK inhibitor, Y27632, prevents dimethylnitrosamine-induced hepatic fibrosis in rats. J Hepatol. 34:529–536. 2001. View Article : Google Scholar : PubMed/NCBI

46 

Bos JL, de Rooij J and Reedquist KA: Rap1 signalling: Adhering to new models. Nat Rev Mol Cell Boil. 2:369–377. 2001. View Article : Google Scholar

47 

Fujita H, Fukuhara S, Sakurai A, Yamagishi A, Kamioka Y, Nakaoka Y, Masuda M and Mochizuki N: Local activation of Rap1 contributes to directional vascular endothelial cell migration accompanied by extension of microtubules on which RAPL, a Rap1-associating molecule, localizes. J Biol Chem. 280:5022–5031. 2005. View Article : Google Scholar

48 

Reedquist KA, Ross E, Koop EA, Wolthuis RM, Zwartkruis FJ, van Kooyk Y, Salmon M, Buckley CD and Bos JL: The small GTPase, Rap1, mediates CD31-induced integrin adhesion. J Cell Biol. 148:1151–1158. 2000. View Article : Google Scholar : PubMed/NCBI

49 

Katagiri K, Hattori M, Minato N, Irie SK, Takatsu K and Kinashi T: Rap1 is a potent activation signal for leukocyte function-associated antigen 1 distinct from protein kinase C and phosphatidylinositol-3-OH kinase. Mol Cell Biol. 20:1956–1969. 2000. View Article : Google Scholar : PubMed/NCBI

50 

Tohyama Y, Katagiri K, Pardi R, Lu C, Springer TA and Kinashi T: The critical cytoplasmic regions of the alphaL/beta2 integrin in Rap1-induced adhesion and migration. Mol Boil Cell. 14:2570–2582. 2003. View Article : Google Scholar

51 

Jeon CY, Kim HJ, Lee JY, Kim JB, Kim SC and Park JB: p190RhoGAP and Rap-dependent RhoGAP (ARAP3) inactivate RhoA in response to nerve growth factor leading to neurite outgrowth from PC12 cells. Exp Mol Med. 42:335–344. 2010. View Article : Google Scholar : PubMed/NCBI

52 

Krugmann S, Williams R, Stephens L and Hawkins PT: ARAP3 is a PI3K- and rap-regulated GAP for RhoA. Curr Boil. 14:1380–1384. 2004. View Article : Google Scholar

53 

Mao R, Fan Y, Mou Y, Zhang H, Fu S and Yang J: TAK1 lysine 158 is required for TGF-β-induced TRAF6-mediated Smad-independent IKK/NF-κB and JNK/AP-1 activation. Cell Signal. 23:222–227. 2011. View Article : Google Scholar

54 

Sorrentino A, Thakur N, Grimsby S, Marcusson A, von Bulow V, Schuster N, Zhang S, Heldin CH and Landstrom M: The type I TGF-beta receptor engages TRAF6 to activate TAK1 in a receptor kinase-independent manner. Nat Cell Boil. 10:1199–1207. 2008. View Article : Google Scholar

55 

Takaesu G, Surabhi RM, Park KJ, Ninomiya-Tsuji J, Matsumoto K and Gaynor RB: TAK1 is critical for IkappaB kinase-mediated activation of the NF-kappaB pathway. J Mol Boil. 326:105–115. 2003. View Article : Google Scholar

56 

Wang C, Deng L, Hong M, Akkaraju GR, Inoue J and Chen ZJ: TAK1 is a ubiquitin-dependent kinase of MKK and IKK. Nature. 412:346–351. 2001. View Article : Google Scholar : PubMed/NCBI

57 

Qi W, Chen X, Holian J, Mreich E, Twigg S, Gilbert RE and Pollock CA: Transforming growth factor-beta1 differentially mediates fibronectin and inflammatory cytokine expression in kidney tubular cells. Am J Physiol Renal Physiol. 291:F1070–F1077. 2006. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

August 2019
Volume 44 Issue 2

Print ISSN: 1107-3756
Online ISSN:1791-244X

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Moon, M., Kim, H., Kim, M., Uhm, S., Park, J., Suk, K. ... Kim, S. (2019). Rap1 regulates hepatic stellate cell migration through the modulation of RhoA activity in response to TGF‑β1 . International Journal of Molecular Medicine, 44, 491-502. https://doi.org/10.3892/ijmm.2019.4215
MLA
Moon, M., Kim, H., Kim, M., Uhm, S., Park, J., Suk, K., Park, J., Kim, D., Kim, S."Rap1 regulates hepatic stellate cell migration through the modulation of RhoA activity in response to TGF‑β1 ". International Journal of Molecular Medicine 44.2 (2019): 491-502.
Chicago
Moon, M., Kim, H., Kim, M., Uhm, S., Park, J., Suk, K., Park, J., Kim, D., Kim, S."Rap1 regulates hepatic stellate cell migration through the modulation of RhoA activity in response to TGF‑β1 ". International Journal of Molecular Medicine 44, no. 2 (2019): 491-502. https://doi.org/10.3892/ijmm.2019.4215