Open Access

Erythropoietin suppresses hepatic steatosis and obesity by inhibiting endoplasmic reticulum stress and upregulating fibroblast growth factor 21

  • Authors:
    • Ting Hong
    • Zhijuan Ge
    • Bingjie Zhang
    • Ran Meng
    • Dalong Zhu
    • Yan Bi
  • View Affiliations

  • Published online on: May 28, 2019     https://doi.org/10.3892/ijmm.2019.4210
  • Pages: 469-478
  • Copyright: © Hong et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Erythropoietin (EPO), known primarily for its role in erythropoiesis, was recently reported to play a beneficial role in regulating lipid metabolism; however, the underlying mechanism through which EPO decreases hepatic lipid accumulation requires further investigation. Endoplasmic reticulum (ER) stress may contribute to the progression of hepatic steatosis. The present study investigated the effects of EPO on regulating ER stress in fatty liver. It was demonstrated that EPO inhibited hepatic ER stress and steatosis in vivo and in vitro. Interestingly, these beneficial effects were abrogated in liver‑specific sirtuin 1 (SIRT1)‑knockout mice compared with wild‑type littermates. In addition, in palmitate‑treated hepatocytes, small interfering RNA‑mediated SIRT1 silencing suppressed the effects of EPO on lipid‑induced ER stress. Additionally, EPO stimulated hepatic fibroblast growth factor 21 (FGF21) expression and secretion in a SIRT1‑dependent manner in mice. Furthermore, the sensitivity of hepatocytes from obese mice to FGF21 was restored following treatment with EPO. Collectively, the results of the present study revealed a new mechanism underlying the regulation of hepatic ER stress and FGF21 expression induced by EPO; thus, EPO may be considered as a potential therapeutic agent for the treatment of fatty liver and obesity.

References

1 

Younossi Z, Anstee QM, Marietti M, Hardy T, Henry L, Eslam M, George J and Bugianesi E: Global burden of NAFLD and NASH: Trends, predictions, risk factors and prevention. Nat Rev Gastroenterol Hepatol. 15:11–20. 2018. View Article : Google Scholar

2 

Deng X, Pan X, Cheng C, Liu B, Zhang H, Zhang Y and Xu K: Regulation of SREBP-2 intracellular trafficking improves impaired autophagic flux and alleviates endoplasmic reticulum stress in NAFLD. Biochim Biophys Acta Mol Cell Biol Lipids. 1862:337–350. 2017. View Article : Google Scholar

3 

Leamy AK, Egnatchik RA and Young JD: Molecular mechanisms and the role of saturated fatty acids in the progression of non-alcoholic fatty liver disease. Prog Lipid Res. 52:165–174. 2013. View Article : Google Scholar

4 

Fu S, Watkins SM and Hotamisligil GS: The role of endoplasmic reticulum in hepatic lipid homeostasis and stress signaling. Cell Metab. 15:623–634. 2012. View Article : Google Scholar : PubMed/NCBI

5 

Basseri S and Austin RC: ER stress and lipogenesis: A slippery slope toward hepatic steatosis. Dev Cell. 15:795–796. 2008. View Article : Google Scholar : PubMed/NCBI

6 

Ashraf NU and Sheikh TA: Endoplasmic reticulum stress and Oxidative stress in the pathogenesis of non-alcoholic fatty liver disease. Free Radic Res. 49:1405–1418. 2015. View Article : Google Scholar : PubMed/NCBI

7 

Jang MK, Nam JS, Kim JH, Yun YR, Han CW, Kim BJ, Jeong HS, Ha KT and Jung MH: Schisandra chinensis extract ameliorates nonalcoholic fatty liver via inhibition of endoplasmic reticulum stress. J Ethnopharmacol. 185:96–104. 2016. View Article : Google Scholar : PubMed/NCBI

8 

Yien YY, Shi J, Chen C, Cheung JTM, Grillo AS, Shrestha R, Li L, Zhang X, Kafina MD, Kingsley PD, et al: FAM210B is an erythropoietin target and regulates erythroid heme synthesis by controlling mitochondrial iron import and ferrochelatase activity. J Biol Chem. 293:19797–19811. 2018. View Article : Google Scholar : PubMed/NCBI

9 

Jelkmann W: Erythropoietin: Back to basics. Blood. 115:4151–4152. 2010. View Article : Google Scholar : PubMed/NCBI

10 

She J, Yuan Z, Wu Y, Chen J and Kroll J: Targeting erythropoietin protects against proteinuria in type 2 diabetic patients and in zebrafish. Mol Metab. 8:189–202. 2018. View Article : Google Scholar :

11 

Kodo K, Sugimoto S, Nakajima H, Mori J, Itoh I, Fukuhara S, Shigehara K, Nishikawa T, Kosaka K and Hosoi H: Erythropoietin (EPO) ameliorates obesity and glucose homeostasis by promoting thermogenesis and endocrine function of classical brown adipose tissue (BAT) in diet-induced obese mice. PLoS One. 12:e01736612017. View Article : Google Scholar : PubMed/NCBI

12 

Caillaud C, Connes P, Ben Saad H and Mercier J: Erythropoietin enhances whole body lipid oxidation during prolonged exercise in humans. J Physiol Biochem. 71:9–16. 2015. View Article : Google Scholar : PubMed/NCBI

13 

Hojman P, Brolin C, Gissel H, Brandt C, Zerahn B, Pedersen BK and Gehl J: Erythropoietin over-expression protects against diet-induced obesity in mice through increased fat oxidation in muscles. PLoS One. 4:e58942009. View Article : Google Scholar : PubMed/NCBI

14 

Ge Z, Zhang P, Hong T, Tang S, Meng R, Bi Y and Zhu D: Erythropoietin alleviates hepatic insulin resistance via PPARγ-dependent AKT activation. Sci Rep. 5:178782015. View Article : Google Scholar

15 

Hong T, Ge Z, Meng R, Wang H, Zhang P, Tang S, Lu J, Gu T, Zhu D and Bi Y: Erythropoietin alleviates hepatic steatosis by activating SIRT1-mediated autophagy. Biochim Biophys Acta Mol Cell Biol Lipids. 1863:595–603. 2018. View Article : Google Scholar : PubMed/NCBI

16 

Sathyanarayan A, Mashek MT and Mashek DG: ATGL promotes autophagy/lipophagy via SIRT1 to control hepatic lipid droplet catabolism. Cell Rep. 19:1–9. 2017. View Article : Google Scholar : PubMed/NCBI

17 

Kong Q, Zhang H, Zhao T, Zhang W, Yan M, Dong X and Li P: Tangshen formula attenuates hepatic steatosis by inhibiting hepatic lipogenesis and augmenting fatty acid oxidation in db/db mice. Int J Mol Med. 38:1715–1726. 2016. View Article : Google Scholar : PubMed/NCBI

18 

Li Y, Xu S, Giles A, Nakamura K, Lee JW, Hou X, Donmez G, Li J, Luo Z, Walsh K, et al: Hepatic overexpression of SIRT1 in mice attenuates endoplasmic reticulum stress and insulin resistance in the liver. FASEB J. 25:1664–1679. 2011. View Article : Google Scholar : PubMed/NCBI

19 

Pan Q, Ren Y, Liu W, Hu Y, Zheng J, Xu Y and Wang G: Resveratrol prevents hepatic steatosis and endoplasmic reticulum stress and regulates the expression of genes involved in lipid metabolism, insulin resistance, and inflammation in rats. Nutr Res. 35:576–584. 2015. View Article : Google Scholar : PubMed/NCBI

20 

Kang X, Yang W, Wang R, Xie T, Li H, Feng D, Jin X, Sun H and Wu S: Sirtuin-1 (SIRT1) stimulates growth-plate chondrogenesis by attenuating the PERK-eIF-2α-CHOP pathway in the unfolded protein response. J Biol Chem. 293:8614–8625. 2018. View Article : Google Scholar : PubMed/NCBI

21 

Li Y, Wong K, Giles A, Jiang J, Lee JW, Adams AC, Kharitonenkov A, Yang Q, Gao B, Guarente L and Zang M: Hepatic SIRT1 attenuates hepatic steatosis and controls energy balance in mice by inducing fibroblast growth factor 21. Gastroenterology. 146:539–549.e7. 2014. View Article : Google Scholar :

22 

Han HS, Choi BH, Kim JS, Kang G and Koo SH: Hepatic Crtc2 controls whole body energy metabolism via a miR-34a-Fgf21 axis. Nat Commun. 8:18782017. View Article : Google Scholar : PubMed/NCBI

23 

Zheng Q, Tong M, Ou B, Liu C, Hu C and Yang Y: Isorhamnetin protects against bleomycin-induced pulmonary fibrosis by inhibiting endoplasmic reticulum stress and epithelial-mesenchymal transition. Int J Mol Med. 43:117–126. 2019.

24 

Varghese F, Bukhari AB, Malhotra R and De A: IHC Profiler: An open source plugin for the quantitative evaluation and automated scoring of immunohistochemistry images of human tissue samples. PLoS One. 9:e968012014. View Article : Google Scholar : PubMed/NCBI

25 

Shah KN, Bhatt R, Rotow J, Rohrberg J, Olivas V, Wang VE, Hemmati G, Martins MM, Maynard A, Kuhn J, et al: Aurora kinase A drives the evolution of resistance to third-generation EGFR inhibitors in lung cancer. Nat Med. 25:111–118. 2019. View Article : Google Scholar

26 

Seglen PO: Hepatocyte suspensions and cultures as tools in experimental carcinogenesis. J Toxicol Environ Health. 5:551–560. 1979. View Article : Google Scholar : PubMed/NCBI

27 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods. 25:402–408. 2001. View Article : Google Scholar

28 

Zhang W, Sun Y, Liu W, Dong J and Chen J: SIRT1 mediates the role of RNA-binding protein QKI 5 in the synthesis of triglycerides in non-alcoholic fatty liver disease mice via the PPARα/FoxO1 signaling pathway. Int J Mol Med. 43:1271–1280. 2019.PubMed/NCBI

29 

Babaknejad N, Nayeri H, Hemmati R, Bahrami S and Esmaillzadeh A: An overview of FGF19 and FGF21: The therapeutic role in the treatment of the metabolic disorders and obesity. Horm Metab Res. 50:441–452. 2018. View Article : Google Scholar : PubMed/NCBI

30 

Fisher FM, Chui PC, Antonellis PJ, Bina HA, Kharitonenkov A, Flier JS and Maratos-Flier E: Obesity is a fibroblast growth factor 21 (FGF21)-resistant state. Diabetes. 59:2781–2789. 2010. View Article : Google Scholar : PubMed/NCBI

31 

Gasparin FRS, Carreño FO, Mewes JM, Gilglioni EH, Pagadigorria CLS, Natali MRM, Utsunomiya KS, Constantin RP, Ouchida AT, Curti C, et al: Sex differences in the development of hepatic steatosis in cafeteria diet-induced obesity in young mice. Biochim Biophys Acta Mol Basis Dis. 1864:2495–2509. 2018. View Article : Google Scholar : PubMed/NCBI

32 

Henkel AS: Unfolded protein response sensors in hepatic lipid metabolism and nonalcoholic fatty liver disease. Semin Liver Dis. 38:320–332. 2018. View Article : Google Scholar : PubMed/NCBI

33 

Rutkowski DT, Wu J, Back SH, Callaghan MU, Ferris SP, Iqbal J, Clark R, Miao H, Hassler JR, Fornek J, et al: UPR pathways combine to prevent hepatic steatosis caused by ER stress-mediated suppression of transcriptional master regulators. Dev Cell. 15:829–840. 2008. View Article : Google Scholar : PubMed/NCBI

34 

Oyadomari S, Harding HP, Zhang Y, Oyadomari M and Ron D: Dephosphorylation of translation initiation factor 2alpha enhances glucose tolerance and attenuates hepatosteatosis in mice. Cell Metab. 7:520–532. 2008. View Article : Google Scholar : PubMed/NCBI

35 

Kong D, Zhuo L, Gao C, Shi S, Wang N, Huang Z, Li W and Hao L: Erythropoietin protects against cisplatin-induced nephrotoxicity by attenuating endoplasmic reticulum stress-induced apoptosis. J Nephrol. 26:219–227. 2013. View Article : Google Scholar

36 

Lu J, Dai Q, Ma G, Zhu Y, Chen B, Li B and Yao Y: Erythropoietin attenuates cardiac dysfunction in rats by inhibiting endoplasmic reticulum stress-induced diabetic cardiomyopathy. Cardiovasc Drugs Ther. 31:367–379. 2017. View Article : Google Scholar : PubMed/NCBI

37 

Jung TW, Lee KT, Lee MW and Ka KH: SIRT1 attenuates palmitate-induced endoplasmic reticulum stress and insulin resistance in HepG2 cells via induction of oxygen-regulated protein 150. Biochem Biophys Res Commun. 422:229–232. 2012. View Article : Google Scholar : PubMed/NCBI

38 

Matsui S, Sasaki T, Kohno D, Yaku K, Inutsuka A, Yokota- Hashimoto H, Kikuchi O, Suga T, Kobayashi M, Yamanaka A, et al: Neuronal SIRT1 regulates macronutrient-based diet selection through FGF21 and oxytocin signalling in mice. Nat Commun. 9:46042018. View Article : Google Scholar : PubMed/NCBI

39 

Jimenez V, Jambrina C, Casana E, Sacristan V, Muñoz S, Darriba S, Rodó J, Mallol C, Garcia M, Leó X, et al: FGF21 gene therapy as treatment for obesity and insulin resistance. EMBO Mol Med. 10:pii: e8791. 2018. View Article : Google Scholar : PubMed/NCBI

40 

Liu M, Cao H, Hou Y, Sun G, Li D and Wang W: Liver plays a major role in FGF-21 mediated glucose homeostasis. Cell Physiol Biochem. 45:1423–1433. 2018. View Article : Google Scholar : PubMed/NCBI

41 

Fisher FM, Kleiner S, Douris N, Fox EC, Mepani RJ, Verdeguer F, Wu J, Kharitonenkov A, Flier JS, Maratos-Flier E and Spiegelman BM: FGF21 regulates PGC-1α and browning of white adipose tissues in adaptive thermogenesis. Genes Dev. 26:271–281. 2012. View Article : Google Scholar : PubMed/NCBI

42 

Dushay J, Chui PC, Gopalakrishnan GS, Varela-Rey M, Crawley M, Fisher FM, Badman MK, Martinez-Chantar ML and Maratos-Flier E: Increased fibroblast growth factor 21 in obesity and nonalcoholic fatty liver disease. Gastroenterology. 139:456–463. 2010. View Article : Google Scholar : PubMed/NCBI

43 

Rusli F, Deelen J, Andriyani E, Boekschoten MV, Lute C, van den Akker EB, Müller M, Beekman M and Steegenga WT: Fibroblast growth factor 21 reflects liver fat accumulation and dysregulation of signalling pathways in the liver of C57BL/6J mice. Sci Rep. 6:304842016. View Article : Google Scholar : PubMed/NCBI

44 

Jiang S, Yan C, Fang QC, Shao ML, Zhang YL, Liu Y, Deng YP, Shan B, Liu JQ, Li HT, et al: Fibroblast growth factor 21 is regulated by the IRE1α-XBP1 branch of the unfolded protein response and counteracts endoplasmic reticulum stress-induced hepatic steatosis. J Biol Chem. 289:29751–29765. 2014. View Article : Google Scholar : PubMed/NCBI

45 

Ye M, Lu W, Wang X, Wang C, Abbruzzese JL, Liang G, Li X and Luo Y: FGF21-FGFR1 coordinates phospholipid homeostasis, lipid droplet function, and ER stress in obesity. Endocrinology. 157:4754–4769. 2016. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

August 2019
Volume 44 Issue 2

Print ISSN: 1107-3756
Online ISSN:1791-244X

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Hong, T., Ge, Z., Zhang, B., Meng, R., Zhu, D., & Bi, Y. (2019). Erythropoietin suppresses hepatic steatosis and obesity by inhibiting endoplasmic reticulum stress and upregulating fibroblast growth factor 21. International Journal of Molecular Medicine, 44, 469-478. https://doi.org/10.3892/ijmm.2019.4210
MLA
Hong, T., Ge, Z., Zhang, B., Meng, R., Zhu, D., Bi, Y."Erythropoietin suppresses hepatic steatosis and obesity by inhibiting endoplasmic reticulum stress and upregulating fibroblast growth factor 21". International Journal of Molecular Medicine 44.2 (2019): 469-478.
Chicago
Hong, T., Ge, Z., Zhang, B., Meng, R., Zhu, D., Bi, Y."Erythropoietin suppresses hepatic steatosis and obesity by inhibiting endoplasmic reticulum stress and upregulating fibroblast growth factor 21". International Journal of Molecular Medicine 44, no. 2 (2019): 469-478. https://doi.org/10.3892/ijmm.2019.4210