Open Access

O-GlcNAcylation in immunity and inflammation: An intricate system (Review)

  • Authors:
    • Yu Li
    • Mingzheng Xie
    • Lili Men
    • Jianling Du
  • View Affiliations

  • Published online on: June 11, 2019     https://doi.org/10.3892/ijmm.2019.4238
  • Pages: 363-374
  • Copyright: © Li et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Chronic, low‑grade inflammation associated with obesity and diabetes result from the infiltration of adipose and vascular tissue by immune cells and contributes to cardiovascular complications. Despite an incomplete understanding of the mechanistic underpinnings of immune cell differentiation and inflammation, O‑GlcNAcylation, the addition of O‑linked N‑acetylglucosamine (O‑GlcNAc) to cytoplasmic, nuclear and mitochondrial proteins by the two cycling enzymes, the O‑linked N‑acetylglucosamine transferase (OGT) and the O‑GlcNAcase (OGA), may contribute to fine‑tune immunity and inflammation in both physiological and pathological conditions. Early studies have indicated that O‑GlcNAcylation of proteins play a pro‑inflammatory role in diabetes and insulin resistance, whereas subsequent studies have demonstrated that this post‑translational modification could also be protective against acute injuries. These studies suggest that diverse types of insults result in dynamic changes to O‑GlcNAcylation patterns, which fluctuate with cellular metabolism to promote or inhibit inflammation. In this review, the current understanding of O‑GlcNAcylation and its adaptive modulation in immune and inflammatory responses is summarized.

References

1 

Ong Q, Han W and Yang) X: O-GlcNAc as an integrator of signaling pathways. Front Endocrinol (Lausanne). 9:5992018. View Article : Google Scholar

2 

D'Hondt C, Iyyathurai J, Vinken M, Rogiers V, Leybaert L, Himpens B and Bultynck G: Regulation of connexin- and pannexin-based channels by post-translational modifications. Biol Cell. 105:373–398. 2013. View Article : Google Scholar : PubMed/NCBI

3 

Xie Y, Kang R, Sun X, Zhong M, Huang J, Klionsky DJ and Tang D: Posttranslational modification of autophagy-related proteins in macroautophagy. Autophagy. 11:28–45. 2015. View Article : Google Scholar :

4 

Schedin-Weiss S, Winblad B and Tjernberg LO: The role of protein glycosylation in Alzheimer disease. FEBS J. 281:46–62. 2014. View Article : Google Scholar

5 

Gurel Z and Sheibani N: O-Linked β-N-acetylglucosamine (O-GlcNAc) modification: A new pathway to decode pathogenesis of diabetic retinopathy. Clin Sci (Lond). 132:185–198. 2018. View Article : Google Scholar

6 

Hurtado-Guerrero R, Dorfmueller HC and van Aalten DM: Molecular mechanisms of O-GlcNAcylation. Curr Opin Struct Biol. 18:551–557. 2008. View Article : Google Scholar : PubMed/NCBI

7 

Yang X and Qian K: Protein O-GlcNAcylation: Emerging mechanisms and functions. Nat Rev Mol Cell Biol. 18:452–465. 2017. View Article : Google Scholar : PubMed/NCBI

8 

Myslicki JP, Belke DD and Shearer J: Role of O-GlcNAcylation in nutritional sensing, insulin resistance and in mediating the benefits of exercise. Appl Physiol Nutr Metab. 39:1205–1213. 2014. View Article : Google Scholar : PubMed/NCBI

9 

Levine ZG and Walker S: The biochemistry of O-GlcNAc transferase: Which functions make it essential in mammalian cells? Annu Rev Biochem. 85:631–657. 2016. View Article : Google Scholar : PubMed/NCBI

10 

Aquino-Gil M, Pierce A, Perez-Cervera Y, Zenteno E and Lefebvre T: OGT: A short overview of an enzyme standing out from usual glycosyltransferases. Biochem Soc Trans. 45:365–370. 2017. View Article : Google Scholar : PubMed/NCBI

11 

Ogawa M, Furukawa K and Okajima T: Extracellular O-linked β-N-acetylglucosamine: Its biology and relationship to human disease. World J Biol Chem. 5:224–230. 2014.PubMed/NCBI

12 

Varshney S and Stanley P: EOGT and O-GlcNAc on secreted and membrane proteins. Biochem Soc Trans. 45:401–408. 2017. View Article : Google Scholar : PubMed/NCBI

13 

Ruan HB, Nie Y and Yang X: Regulation of protein degradation by O-GlcNAcylation: Crosstalk with ubiquitination. Mol Cell Proteomics. 12:3489–3497. 2013. View Article : Google Scholar : PubMed/NCBI

14 

Zhu Y, Liu TW, Cecioni S, Eskandari R, Zandberg WF and Vocadlo DJ: O-GlcNAc occurs cotranslationally to stabilize nascent polypeptide chains. Nat Chem Biol. 11:319–325. 2015. View Article : Google Scholar : PubMed/NCBI

15 

Sayat R, Leber B, Grubac V, Wiltshire L and Persad S: O-GlcNAc-glycosylation of beta-catenin regulates its nuclear localization and transcriptional activity. Exp Cell Res. 314:2774–2787. 2008. View Article : Google Scholar : PubMed/NCBI

16 

Skorobogatko Y, Landicho A, Chalkley RJ, Kossenkov AV, Gallo G and Vosseller K: O-linked β-N-acetylglucosamine (O-GlcNAc) site thr-87 regulates synapsin I localization to synapses and size of the reserve pool of synaptic vesicles. J Biol Chem. 289:3602–3612. 2014. View Article : Google Scholar

17 

Butkinaree C, Park K and Hart GW: O-linked beta-N-acetylglu-cosamine (O-GlcNAc): Extensive crosstalk with phosphorylation to regulate signaling and transcription in response to nutrients and stress. Biochim Biophys Acta. 1800:96–106. 2010. View Article : Google Scholar

18 

Levine ZG, Fan C, Melicher MS, Orman M, Benjamin T and Walker S: O-GlcNAc transferase recognizes protein substrates using an asparagine ladder in the tetratricopeptide repeat (TPR) superhelix. J Am Chem Soc. 140:3510–3513. 2018. View Article : Google Scholar : PubMed/NCBI

19 

Rafie K, Raimi O, Ferenbach AT, Borodkin VS, Kapuria V and van Aalten DMF: Recognition of a glycosylation substrate by the O-GlcNAc transferase TPR repeats. Open Biol. 7:1700782017. View Article : Google Scholar : PubMed/NCBI

20 

Ma X, Liu P, Yan H, Sun H, Liu X, Zhou F, Li L, Chen Y, Muthana MM, Chen X, et al: Substrate specificity provides insights into the sugar donor recognition mechanism of O-GlcNAc transferase (OGT). PLoS One. 8:e634522013. View Article : Google Scholar : PubMed/NCBI

21 

Nagel AK and Ball LE: O-GlcNAc transferase and O-GlcNAcase: Achieving target substrate specificity. Amino Acids. 46:2305–2316. 2014. View Article : Google Scholar : PubMed/NCBI

22 

Bullen JW, Balsbaugh JL, Chanda D, Shabanowitz J, Hunt DF, Neumann D and Hart GW: Cross-talk between two essential nutrient-sensitive enzymes: O-GlcNAc transferase (OGT) and AMP-activated protein kinase (AMPK). J Biol Chem. 289:10592–10606. 2014. View Article : Google Scholar : PubMed/NCBI

23 

Watson LJ, Long BW, DeMartino AM, Brittian KR, Readnower RD, Brainard RE, Cummins TD, Annamalai L, Hill BG and Jones SP: Cardiomyocyte Ogt is essential for postnatal viability. Am J Physiol Heart Circ Physiol. 306:H142–H153. 2014. View Article : Google Scholar :

24 

Ortiz-Meoz RF, Jiang J, Lazarus MB, Orman M, Janetzko J, Fan C, Duveau DY, Tan ZW, Thomas CJ and Walker S: A small molecule that inhibits OGT activity in cells. ACS Chem Biol. 10:1392–1397. 2015. View Article : Google Scholar : PubMed/NCBI

25 

Gross BJ, Kraybill BC and Walker S: Discovery of O-GlcNAc transferase inhibitors. J Am Chem Soc. 127:14588–14589. 2005. View Article : Google Scholar : PubMed/NCBI

26 

Jiang J, Lazarus MB, Pasquina L, Sliz P and Walker S: A neutral diphosphate mimic crosslinks the active site of human O-GlcNAc transferase. Nat Chem Biol. 8:72–77. 2011. View Article : Google Scholar : PubMed/NCBI

27 

Borodkin VS, Schimpl M, Gundogdu M, Rafie K, Dorfmueller HC, Robinson DA and van Aalten DM: Bisubstrate UDP-peptide conjugates as human O-GlcNAc transferase inhibitors. Biochem J. 457:497–502. 2014. View Article : Google Scholar :

28 

Trapannone R, Rafie K and van Aalten DM: O-GlcNAc transferase inhibitors: Current tools and future challenges. Biochem Soc Trans. 44:88–93. 2016. View Article : Google Scholar : PubMed/NCBI

29 

Ruan HB, Singh JP, Li MD, Wu J and Yang X: Cracking the O-GlcNAc code in metabolism. Trends Endocrinol Metab. 24:301–309. 2013. View Article : Google Scholar : PubMed/NCBI

30 

Hanover JA, Krause MW and Love DC: Bittersweet memories: Linking metabolism to epigenetics through O-GlcNAcylation. Nat Rev Mol Cell Biol. 13:312–321. 2012. View Article : Google Scholar : PubMed/NCBI

31 

He Y, Roth C, Turkenburg JP and Davies GJ: Three-dimensional structure of a Streptomyces sviceus GNAT acetyltransferase with similarity to the C-terminal domain of the human GH84 O-GlcNAcase. Acta Crystallogr D Biol Crystallogr. 70:186–195. 2014. View Article : Google Scholar : PubMed/NCBI

32 

Elsen NL, Patel SB, Ford RE, Hall DL, Hess F, Kandula H, Kornienko M, Reid J, Selnick H, Shipman JM, et al: Insights into activity and inhibition from the crystal structure of human O-GlcNAcase. Nat Chem Biol. 13:613–615. 2017. View Article : Google Scholar : PubMed/NCBI

33 

Keembiyehetty CN, Krzeslak A, Love DC and Hanover JA: A lipid-droplet-targeted O-GlcNAcase isoform is a key regulator of the proteasome. J Cell Sci. 124:2851–2860. 2011. View Article : Google Scholar : PubMed/NCBI

34 

Khidekel N, Ficarro SB, Clark PM, Bryan MC, Swaney DL, Rexach JE, Sun YE, Coon JJ, Peters EC and Hsieh-Wilson LC: Probing the dynamics of O-GlcNAc glycosylation in the brain using quantitative proteomics. Nat Chem Biol. 3:339–348. 2007. View Article : Google Scholar : PubMed/NCBI

35 

Crotty S: Follicular helper CD4 T cells (TFH). Annu Rev Immunol. 29:621–663. 2011. View Article : Google Scholar : PubMed/NCBI

36 

Wang R, Dillon CP, Shi LZ, Milasta S, Carter R, Finkelstein D, McCormick LL, Fitzgerald P, Chi H, Munger J and Green DR: The transcription factor Myc controls metabolic reprogramming upon T lymphocyte activation. Immunity. 35:871–882. 2011. View Article : Google Scholar : PubMed/NCBI

37 

MacIver NJ, Michalek RD and Rathmell JC: Metabolic regulation of T lymphocytes. Annu Rev Immunol. 31:259–283. 2013. View Article : Google Scholar : PubMed/NCBI

38 

Machacek M, Slawson C and Fields PE: O-GlcNAc: A novel regulator of immunometabolism. J Bioenerg Biomembr. 50:223–229. 2018. View Article : Google Scholar : PubMed/NCBI

39 

Woo CM, Lund PJ, Huang AC, Davis MM, Bertozzi CR and Pitteri SJ: Mapping and quantification of over 2,000 O-linked glycopeptides in activated human T cells with isotope-targeted glycoproteomics (IsoTaG). Mol Cell Proteomics. 17:764–775. 2018. View Article : Google Scholar : PubMed/NCBI

40 

Lund PJ, Elias JE and Davis MM: Global analysis of O-GlcNAc glycoproteins in activated human T cells. J Immunol. 197:3086–3098. 2016. View Article : Google Scholar : PubMed/NCBI

41 

Swamy M, Pathak S, Grzes KM, Damerow S, Sinclair LV, van Aalten DM and Cantrell DA: Glucose and glutamine fuel protein O-GlcNAcylation to control T cell self-renewal and malignancy. Nat Immunol. 17:712–720. 2016. View Article : Google Scholar : PubMed/NCBI

42 

Hao X, Li Y, Wang J, Ma J, Zhao S, Ye X, He L, Yang J, Gao M, Xiao F and Wei H: Deficient O-GlcNAc glycosylation impairs regulatory T cell differentiation and notch signaling in autoimmune hepatitis. Front Immunol. 9:20892018. View Article : Google Scholar : PubMed/NCBI

43 

Ghosh S, May MJ and Kopp EB: NF-kappa B and Rel proteins: Evolutionarily conserved mediators of immune responses. Annu Rev Immunol. 16:225–260. 1998. View Article : Google Scholar : PubMed/NCBI

44 

Karin M and Ben-Neriah Y: Phosphorylation meets ubiquitination: The control of NF-[kappa]B activity. Annu Rev Immunol. 18:621–663. 2000. View Article : Google Scholar

45 

Lecoq L, Raiola L, Chabot PR, Cyr N, Arseneault G, Legault P and Omichinski JG: Structural characterization of interactions between transactivation domain 1 of the p65 subunit of NF-κB and transcription regulatory factors. Nucleic Acids Res. 45:5564–5576. 2017. View Article : Google Scholar : PubMed/NCBI

46 

Yi H, Peng R, Zhang LY, Sun Y, Peng HM, Liu HD, Yu LJ, Li AL, Zhang YJ, Jiang WH and Zhang Z: LincRNA-Gm4419 knockdown ameliorates NF-κB/NLRP3 inflammasome-mediated inflammation in diabetic nephropathy. Cell Death Dis. 8:e25832017. View Article : Google Scholar

47 

Grundy SM: Overnutrition, ectopic lipid and the metabolic syndrome. J Investig Med. 64:1082–1086. 2016. View Article : Google Scholar : PubMed/NCBI

48 

Zhang Q, Lenardo MJ and Baltimore D: 30 years of NF-κB: A blossoming of relevance to human pathobiology. Cell. 168:37–57. 2017. View Article : Google Scholar : PubMed/NCBI

49 

Baker RG, Hayden MS and Ghosh S: NF-κB, inflammation, and metabolic disease. Cell Metab. 13:11–22. 2011. View Article : Google Scholar : PubMed/NCBI

50 

Hayes JB, Sircy LM, Heusinkveld LE, Ding W, Leander RN, McClelland EE and Nelson DE: Modulation of macrophage inflammatory nuclear factor κB (NF-κB) signaling by intracellular cryptococcus neoformans. J Biol Chem. 291:15614–15627. 2016. View Article : Google Scholar : PubMed/NCBI

51 

Esser N, Paquot N and Scheen AJ: Anti-inflammatory agents to treat or prevent type 2 diabetes, metabolic syndrome and cardiovascular disease. Expert Opin Investig Drugs. 24:283–307. 2015. View Article : Google Scholar

52 

Golks A, Tran TT, Goetschy JF and Guerini D: Requirement for O-linked N-acetylglucosaminyltransferase in lymphocytes activation. EMBO J. 26:4368–4379. 2007. View Article : Google Scholar : PubMed/NCBI

53 

Bunting K, Rao S, Hardy K, Woltring D, Denyer GS, Wang J, Gerondakis S and Shannon MF: Genome-wide analysis of gene expression in T cells to identify targets of the NF-kappa B transcription factor c-Rel. J Immunol. 178:7097–7109. 2007. View Article : Google Scholar : PubMed/NCBI

54 

Ramakrishnan P, Clark PM, Mason DE, Peters EC, Hsieh- Wilson LC and Baltimore D: Activation of the transcriptional function of the NF-κB protein c-Rel by O-GlcNAc glycosylation. Sci Signal. 6:ra752013. View Article : Google Scholar

55 

Baudoin L and Issad) T: O-GlcNacylation and inflammation: A vast territory to explore. Front Endocrinol (Lausanne). 5:2352014.

56 

Wu JL, Chiang MF, Hsu PH, Tsai DY, Hung KH, Wang YH, Angata T and Lin KI: O-GlcNAcylation is required for B cell homeostasis and antibody responses. Nat Commun. 8:18542017. View Article : Google Scholar : PubMed/NCBI

57 

Zanni MV, Burdo TH, Makimura H, Williams KC and Grinspoon SK: Relationship between monocyte/macrophage activation marker soluble CD163 and insulin resistance in obese and normal-weight subjects. Clin Endocrinol (Oxf). 77:385–390. 2012. View Article : Google Scholar

58 

Nagareddy PR, Kraakman M, Masters SL, Stirzaker RA, Gorman DJ, Grant RW, Dragoljevic D, Hong ES, Abdel-Latif A, Smyth SS, et al: Adipose tissue macrophages promote myelopoi-esis and monocytosis in obesity. Cell Metab. 19:821–835. 2014. View Article : Google Scholar : PubMed/NCBI

59 

Mauldin JP, Nagelin MH, Wojcik AJ, Srinivasan S, Skaflen MD, Ayers CR, McNamara CA and Hedrick CC: Reduced expression of ATP-binding cassette transporter G1 increases cholesterol accumulation in macrophages of patients with type 2 diabetes mellitus. Circulation. 117:2785–2792. 2008. View Article : Google Scholar : PubMed/NCBI

60 

Westerbacka J, Kolak M, Kiviluoto T, Arkkila P, Sirén J, Hamsten A, Fisher RM and Yki-Järvinen H: Genes involved in fatty acid partitioning and binding, lipolysis, monocyte/macrophage recruitment, and inflammation are overexpressed in the human fatty liver of insulin-resistant subjects. Diabetes. 56:2759–2765. 2007. View Article : Google Scholar : PubMed/NCBI

61 

Vasamsetti SB, Karnewar S, Kanugula AK, Thatipalli AR, Kumar JM and Kotamraju S: Metformin inhibits monocyte-to-macrophage differentiation via AMPK-mediated inhibition of STAT3 activation: Potential role in atherosclerosis. Diabetes. 64:2028–2041. 2015. View Article : Google Scholar : PubMed/NCBI

62 

Hwang JS, Kwon MY, Kim KH, Lee Y, Lyoo IK, Kim JE, Oh ES and Han IO: Lipopolysaccharide (LPS)-stimulated iNOS induction is increased by glucosamine under normal glucose conditions but is inhibited by glucosamine under high glucose conditions in macrophage cells. J Biol Chem. 292:1724–1736. 2017. View Article : Google Scholar :

63 

Ryu IH and Do SI: Denitrosylation of S-nitrosylated OGT is triggered in LPS-stimulated innate immune response. Biochem Biophys Res Commun. 408:52–57. 2011. View Article : Google Scholar : PubMed/NCBI

64 

Hwang SY, Shin JH, Hwang JS, Kim SY, Shin JA, Oh ES, Oh S, Kim JB, Lee JK and Han IO: Glucosamine exerts a neuro-protective effect via suppression of inflammation in rat brain ischemia/reperfusion injury. Glia. 58:1881–1892. 2010. View Article : Google Scholar : PubMed/NCBI

65 

Hwang JS, Hwang SY and Han IO: Basal transcription is regulated by lipopolysaccharide and glucosamine via the regulation of DNA binding of RNA polymerase II in RAW264.7 cells. Life Sci. 110:93–98. 2014. View Article : Google Scholar : PubMed/NCBI

66 

Kneass ZT and Marchase RB: Protein O-GlcNAc modulates motility-associated signaling intermediates in neutrophils. J Biol Chem. 280:14579–14585. 2005. View Article : Google Scholar : PubMed/NCBI

67 

Kneass ZT and Marchase RB: Neutrophils exhibit rapid agonist-induced increases in protein-associated O-GlcNAc. J Biol Chem. 279:45759–45765. 2004. View Article : Google Scholar : PubMed/NCBI

68 

Madsen-Bouterse SA, Xu Y, Petty HR and Romero R: Quantification of O-GlcNAc protein modification in neutrophils by flow cytometry. Cytometry A. 73:667–672. 2008. View Article : Google Scholar : PubMed/NCBI

69 

Hart GW, Slawson C, Ramirez-Correa G and Lagerlof O: Cross talk between O-GlcNAcylation and phosphorylation: Roles in signaling, transcription, and chronic disease. Annu Rev Biochem. 80:825–858. 2011. View Article : Google Scholar : PubMed/NCBI

70 

Ma J and Hart GW: O-GlcNAc profiling: From proteins to proteomes. Clin Proteomics. 11:82014. View Article : Google Scholar : PubMed/NCBI

71 

Krick S, Helton ES, Hutcheson SB, Blumhof S, Garth JM, Denson RS, Zaharias RS, Wickham H and Barnes JW: FGF23 Induction of O-linked N-acetylglucosamine regulates IL-6 secretion in human bronchial epithelial cells. Front Endocrinol (Lausanne). 9:7082018. View Article : Google Scholar

72 

Guo X, Shang J, Deng Y, Yuan X, Zhu D and Liu H: Alterations in left ventricular function during intermittent hypoxia: Possible involvement of O-GlcNAc protein and MAPK signaling. Int J Mol Med. 36:150–158. 2015. View Article : Google Scholar : PubMed/NCBI

73 

James LR, Tang D, Ingram A, Ly H, Thai K, Cai L and Scholey JW: Flux through the hexosamine pathway is a determinant of nuclear factor kappaB- dependent promoter activation. Diabetes. 51:1146–1156. 2002. View Article : Google Scholar : PubMed/NCBI

74 

Dela Justina V, Goncalves JS, de Freitas RA, Fonseca AD, Volpato GT, Tostes RC, Carneiro FS, Lima VV and Giachini FR: Increased O-linked N-acetylglucosamine modification of NF-κB and augmented cytokine production in the placentas from hyperglycemic rats. Inflammation. 40:1773–1781. 2017. View Article : Google Scholar : PubMed/NCBI

75 

Zhang D, Cai Y, Chen M, Gao L, Shen Y and Huang Z: OGT-mediated O-GlcNAcylation promotes NF-κB activation and inflammation in acute pancreatitis. Inflamm Res. 64:943–952. 2015. View Article : Google Scholar : PubMed/NCBI

76 

Li Y, Liu H, Xu QS, Du YG and Xu J: Chitosan oligosaccharides block LPS-induced O-GlcNAcylation of NF-κB and endothelial inflammatory response. Carbohydr Polym. 99:568–578. 2014. View Article : Google Scholar

77 

Yang WH, Park SY, Nam HW, Kim DH, Kang JG, Kang ES, Kim YS, Lee HC, Kim KS and Cho JW: NFkappaB activation is associated with its O-GlcNAcylation state under hyperglycemic conditions. Proc Natl Acad Sci USA. 105:17345–17350. 2008. View Article : Google Scholar : PubMed/NCBI

78 

Allison DF, Wamsley JJ, Kumar M, Li D, Gray LG, Hart GW, Jones DR and Mayo MW: Modification of RelA by O-linked N-acetylglucosamine links glucose metabolism to NF-κB acetylation and transcription. Proc Natl Acad Sci USA. 109:16888–16893. 2012. View Article : Google Scholar

79 

Ma Z, Chalkley RJ and Vosseller K: Hyper-O-GlcNAcylation activates nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) signaling through interplay with phosphorylation and acetylation. J Biol Chem. 292:9150–9163. 2017. View Article : Google Scholar : PubMed/NCBI

80 

Kawauchi K, Araki K, Tobiume K and Tanaka N: Loss of p53 enhances catalytic activity of IKKbeta through O-linked beta-N-acetyl glucosamine modification. Proc Natl Acad Sci USA. 106:3431–3436. 2009. View Article : Google Scholar : PubMed/NCBI

81 

Donovan K, Alekseev O, Qi X, Cho W and Azizkhan-Clifford J: O-GlcNAc modification of transcription factor Sp1 mediates hyperglycemia-induced VEGF-A upregulation in retinal cells. Invest Ophthalmol Vis Sci. 55:7862–7873. 2014. View Article : Google Scholar : PubMed/NCBI

82 

Zhang Y, Qu Y, Niu T, Wang H and Liu K: O-GlcNAc modification of Sp1 mediates hyperglycaemia-induced ICAM-1 up-regulation in endothelial cells. Biochem Biophys Res Commun. 484:79–84. 2017. View Article : Google Scholar : PubMed/NCBI

83 

O'Shea JJ and Plenge R: JAK and STAT signaling molecules in immunoregulation and immune-mediated disease. Immunity. 36:542–550. 2012. View Article : Google Scholar : PubMed/NCBI

84 

Li X, Zhang Z, Li L, Gong W, Lazenby AJ, Swanson BJ, Herring LE, Asara JM, Singer JD and Wen H: Myeloid-derived cullin 3 promotes STAT3 phosphorylation by inhibiting OGT expression and protects against intestinal inflammation. J Exp Med. 214:1093–1109. 2017. View Article : Google Scholar : PubMed/NCBI

85 

Pathak S, Borodkin VS, Albarbarawi O, Campbell DG, Ibrahim A and van Aalten DM: O-GlcNAcylation of TAB1 modulates TAK1-mediated cytokine release. EMBO J. 31:1394–1404. 2012. View Article : Google Scholar : PubMed/NCBI

86 

Hirata Y, Takahashi M, Morishita T, Noguchi T and Matsuzawa A: Post-translational modifications of the TAK1-TAB complex. Int J Mol Sci. 18:E2052017. View Article : Google Scholar : PubMed/NCBI

87 

Zhang D, Xu Z, Tao T, Liu X, Sun X, Ji Y, Han L, Qiu H, Zhu G, Shen Y, et al: Modification of TAK1 by O-linked N-acetylglucosamine facilitates TAK1 activation and promotes M1 macrophage polarization. Cell Signal. 28:1742–1752. 2016. View Article : Google Scholar : PubMed/NCBI

88 

Hou CW, Mohanan V, Zachara NE and Grimes CL: Identification and biological consequences of the O-GlcNAc modification of the human innate immune receptor, Nod2. Glycobiology. 26:13–18. 2016.

89 

Xing D, Feng W, Not LG, Miller AP, Zhang Y, Chen YF, Majid-Hassan E, Chatham JC and Oparil S: Increased protein O-GlcNAc modification inhibits inflammatory and neointimal responses to acute endoluminal arterial injury. Am J Physiol Heart Circ Physiol. 295:H335–H342. 2008. View Article : Google Scholar : PubMed/NCBI

90 

Hilgers RH, Xing D, Gong K, Chen YF, Chatham JC and Oparil S: Acute O-GlcNAcylation prevents inflammation-induced vascular dysfunction. Am J Physiol Heart Circ Physiol. 303:H513–H522. 2012. View Article : Google Scholar : PubMed/NCBI

91 

Zou L, Yang S, Hu S, Chaudry IH, Marchase RB and Chatham JC: The protective effects of PUGNAc on cardiac function after trauma-hemorrhage are mediated via increased protein O-GlcNAc levels. Shock. 27:402–408. 2007. View Article : Google Scholar : PubMed/NCBI

92 

Zou L, Yang S, Champattanachai V, Hu S, Chaudry IH, Marchase RB and Chatham JC: Glucosamine improves cardiac function following trauma-hemorrhage by increased protein O-GlcNAcylation and attenuation of NF-{kappa}B signaling. Am J Physiol Heart Circ Physiol. 296:H515–H523. 2009. View Article : Google Scholar

93 

Yamamoto Y and Gaynor RB: IkappaB kinases: Key regulators of the NF-kappaB pathway. Trends Biochem Sci. 29:72–79. 2004. View Article : Google Scholar : PubMed/NCBI

94 

Meirow Y and Baniyash M: Immune biomarkers for chronic inflammation related complications in non-cancerous and cancerous diseases. Cancer Immunol Immunother. 66:1089–1101. 2017. View Article : Google Scholar : PubMed/NCBI

95 

Holmdahl R, Sareila O, Olsson LM, Backdahl L and Wing K: Ncf1 polymorphism reveals oxidative regulation of autoimmune chronic inflammation. Immunol Rev. 269:228–247. 2016. View Article : Google Scholar

96 

Pietropaolo M, Barinas-Mitchell E and Kuller LH: The heterogeneity of diabetes: Unraveling a dispute: Is systemic inflammation related to islet autoimmunity? Diabetes. 56:1189–1197. 2007. View Article : Google Scholar : PubMed/NCBI

97 

Vaidyanathan K and Wells L: Multiple tissue-specific roles for the O-GlcNAc post-translational modification in the induction of and complications arising from type II diabetes. J Biol Chem. 289:34466–34471. 2014. View Article : Google Scholar : PubMed/NCBI

98 

Xing D, Gong K, Feng W, Nozell SE, Chen YF, Chatham JC and Oparil S: O-GlcNAc modification of NFκB p65 inhibits TNF-α-induced inflammatory mediator expression in rat aortic smooth muscle cells. PLoS One. 6:e240212011. View Article : Google Scholar

99 

Hirata Y, Nakagawa T, Moriwaki K, Koubayashi E, Kakimoto K, Takeuchi T, Inoue T, Higuchi K and Asahi M: Augmented O-GlcNAcylation alleviates inflammation-mediated colon carcinogenesis via suppression of acute inflammation. J Clin Biochem Nutr. 62:221–229. 2018. View Article : Google Scholar : PubMed/NCBI

100 

Hwang SY, Hwang JS, Kim SY and Han IO: O-GlcNAcylation and p50/p105 binding of c-Rel are dynamically regulated by LPS and glucosamine in BV2 microglia cells. Br J Pharmacol. 169:1551–1560. 2013. View Article : Google Scholar : PubMed/NCBI

101 

Zheng GM, Yu C and Yang Z: Puerarin suppresses production of nitric oxide and inducible nitric oxide synthase in lipopolysac-charide-induced N9 microglial cells through regulating MAPK phosphorylation, O-GlcNAcylation and NF-κB translocation. Int J Oncol. 40:1610–1618. 2012.PubMed/NCBI

102 

Hwang SY, Hwang JS, Kim SY and Han IO: O-GlcNAc transferase inhibits LPS-mediated expression of inducible nitric oxide synthase through an increased interaction with mSin3A in RAW264.7 cells. Am J Physiol Cell Physiol. 305:C601–C608. 2013. View Article : Google Scholar : PubMed/NCBI

103 

He Y, Ma X, Li D and Hao J: Thiamet G mediates neuroprotection in experimental stroke by modulating microglia/macrophage polarization and inhibiting NF-κB p65 signaling. J Cereb Blood Flow Metab. 37:2938–2951. 2017. View Article : Google Scholar

104 

Lim K and Chang HI: O-GlcNAc inhibits interaction between Sp1 and Elf-1 transcription factors. Biochem Biophys Res Commun. 380:569–574. 2009. View Article : Google Scholar : PubMed/NCBI

105 

Lim K and Chang HI: O-GlcNAcylation of Sp1 interrupts Sp1 interaction with NF-Y. Biochem Biophys Res Commun. 382:593–597. 2009. View Article : Google Scholar : PubMed/NCBI

106 

Jokela TA, Makkonen KM, Oikari S, Kärnä R, Koli E, Hart GW, Tammi RH, Carlberg C and Tammi MI: Cellular content of UDP-N-acetylhexosamines controls hyaluronan synthase 2 expression and correlates with O-linked N-acetylglucosamine modification of transcription factors YY1 and SP1. J Biol Chem. 286:33632–33640. 2011. View Article : Google Scholar : PubMed/NCBI

107 

Lim K and Chang HI: O-GlcNAc inhibits interaction between Sp1 and sterol regulatory element binding protein 2. Biochem Biophys Res Commun. 393:314–318. 2010. View Article : Google Scholar : PubMed/NCBI

108 

Suh HN, Lee YJ, Kim MO, Ryu JM and Han HJ: Glucosamine- induced Sp1 O-GlcNAcylation ameliorates hypoxia-induced SGLT dysfunction in primary cultured renal proximal tubule cells. J Cell Physiol. 229:1557–1568. 2014. View Article : Google Scholar : PubMed/NCBI

109 

Lee HJ, Ryu JM, Jung YH, Lee KH, Kim DI and Han HJ: Glycerol-3-phosphate acyltransferase-1 upregulation by O-GlcNAcylation of Sp1 protects against hypoxia-induced mouse embryonic stem cell apoptosis via mTOR activation. Cell Death Dis. 7:e21582016. View Article : Google Scholar : PubMed/NCBI

110 

Coornaert B, Carpentier I and Beyaert R: A20: Central gatekeeper in inflammation and immunity. J Biol Chem. 284:8217–8221. 2009. View Article : Google Scholar :

111 

Yao D, Xu L, Xu O, Li R, Chen M, Shen H, Zhu H, Zhang F, Yao D, Chen YF, et al: O-Linked β-N-acetylglucosamine modification of A20 enhances the inhibition of NF-κB (nuclear factor-κB) activation and elicits vascular protection after acute endoluminal arterial injury. Arterioscler Thromb Vasc Biol. 38:1309–1320. 2018. View Article : Google Scholar : PubMed/NCBI

112 

Yang WH, Park SY, Ji S, Kang JG, Kim JE, Song H, Mook-Jung I, Choe KM and Cho JW: O-GlcNAcylation regulates hyperglycemia-induced GPX1 activation. Biochem Biophys Res Commun. 391:756–761. 2010. View Article : Google Scholar

113 

Olivier-Van Stichelen S and Hanover JA: You are what you eat: O-linked N-acetylglucosamine in disease, development and epigenetics. Curr Opin Clin Nutr Metab Care. 18:339–345. 2015. View Article : Google Scholar : PubMed/NCBI

114 

Someya A, Ikegami T, Sakamoto K and Nagaoka I: Glucosamine downregulates the IL-1β-induced expression of proinflammatory cytokine genes in human synovial MH7A cells by O-GlcNAc modification-dependent and -independent mechanisms. PLoS One. 11:e01651582016. View Article : Google Scholar

115 

Chehimi M, Vidal H and Eljaafari A: Pathogenic role of IL-17-producing immune cells in obesity, and related inflammatory diseases. J Clin Med. 6:E682017. View Article : Google Scholar : PubMed/NCBI

116 

Ridker PM, Everett BM, Thuren T, MacFadyen JG, Chang WH, Ballantyne C, Fonseca F, Nicolau J, Koenig W, Anker SD, et al: Antiinflammatory therapy with canakinumab for atherosclerotic disease. N Engl J Med. 377:1119–1131. 2017. View Article : Google Scholar : PubMed/NCBI

117 

Carbo A, Hontecillas R, Kronsteiner B, Viladomiu M, Pedragosa M, Lu P, Philipson CW, Hoops S, Marathe M, Eubank S, et al: Systems modeling of molecular mechanisms controlling cytokine-driven CD4+ T cell differentiation and phenotype plasticity. PLoS Comput Biol. 9:e10030272013. View Article : Google Scholar

118 

Hewagama A, Gorelik G, Patel D, Liyanarachchi P, McCune WJ, Somers E, Gonzalez-Rivera T, Michigan Lupus Cohort, Strickland F and Richardson B: Overexpression of X-linked genes in T cells from women with lupus. J Autoimmun. 41:60–71. 2013. View Article : Google Scholar : PubMed/NCBI

119 

Liu R, Ma X, Chen L, Yang Y, Zeng Y, Gao J, Jiang W, Zhang F, Li D, Han B, et al: MicroRNA-15b suppresses Th17 differentiation and is associated with pathogenesis of multiple sclerosis by targeting O-GlcNAc transferase. J Immunol. 198:2626–2639. 2017. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

August 2019
Volume 44 Issue 2

Print ISSN: 1107-3756
Online ISSN:1791-244X

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Li, Y., Xie, M., Men, L., & Du, J. (2019). O-GlcNAcylation in immunity and inflammation: An intricate system (Review). International Journal of Molecular Medicine, 44, 363-374. https://doi.org/10.3892/ijmm.2019.4238
MLA
Li, Y., Xie, M., Men, L., Du, J."O-GlcNAcylation in immunity and inflammation: An intricate system (Review)". International Journal of Molecular Medicine 44.2 (2019): 363-374.
Chicago
Li, Y., Xie, M., Men, L., Du, J."O-GlcNAcylation in immunity and inflammation: An intricate system (Review)". International Journal of Molecular Medicine 44, no. 2 (2019): 363-374. https://doi.org/10.3892/ijmm.2019.4238