Protein arginine methyltransferase 6 suppresses adipogenic differentiation by repressing peroxisome proliferator‑activated receptor γ activity

  • Authors:
    • Jee Won Hwang
    • Yun‑Seong So
    • Gyu‑Un Bae
    • Su‑Nam Kim
    • Yong Kee Kim
  • View Affiliations

  • Published online on: March 27, 2019     https://doi.org/10.3892/ijmm.2019.4147
  • Pages: 2462-2470
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

The present study demonstrated that protein arginine methyltransferase 6 (PRMT6) negatively regulates the activity of peroxisome proliferator‑activated receptor γ (PPARγ). The results indicated that the overexpression of PRMT6 inhibited the transactivity of PPARγ and subsequently decreased the expression levels of PPARγ target genes. Contrarily, the depletion or inhibition of PRMT6 increased PPARγ reporter activity and the expression of its target genes. It was also confirmed that PRMT6 was involved in the process of adipocyte differentiation. In addition, PRMT6 interacted with, but did not methylate, PPARγ. PRMT6 bound to the PPAR‑responsive regulatory element of the adipocyte Protein 2 (aP2) promoter in conjunction with PPARγ and generated the repressive epigenetic mark arginine 2 on histone H3 asymmetric di‑methylation, which suppressed aP2 gene expression. Therefore, PRMT6 may serve as an important regulator of PPARγ activity in adipogenic differentiation and may be an attractive therapeutic target for human metabolic diseases.

References

1 

Ahmadian M, Suh JM, Hah N, Liddle C, Atkins AR, Downes M and Evans RM: PPARγ signaling and metabolism: The good, the bad and the future. Nat Med. 19:557–566. 2013. View Article : Google Scholar : PubMed/NCBI

2 

Willson TM, Lambert MH and Kliewer SA: Peroxisome proliferator-activated receptor gamma and metabolic disease. Annu Rev Biochem. 70:341–367. 2001. View Article : Google Scholar : PubMed/NCBI

3 

Grygiel-Górniak B: Peroxisome proliferator-activated receptors and their ligands: Nutritional and clinical implications-a review. Nutr J. 13:172014. View Article : Google Scholar

4 

Tyagi S, Gupta P, Saini AS, Kaushal C and Sharma S: The peroxisome proliferator-activated receptor: A family of nuclear receptors role in various diseases. J Adv Pharm Technol Res. 2:236–240. 2011. View Article : Google Scholar

5 

Janani C and Ranjitha Kumari BD: PPAR gamma gene-a review. Diabetes Metab Syndr. 9:46–50. 2015. View Article : Google Scholar

6 

Braissant O, Foufelle F, Scotto C, Dauça M and Wahli W: Differential expression of peroxisome proliferator-activated receptors (PPARs): Tissue distribution of PPAR-alpha, -beta, and -gamma in the adult rat. Endocrinology. 137:354–366. 1996. View Article : Google Scholar : PubMed/NCBI

7 

Auboeuf D, Rieusset J, Fajas L, Vallier P, Frering V, Riou JP, Staels B, Auwerx J, Laville M and Vidal H: Tissue distribution and quantification of the expression of mRNAs of peroxisome proliferator-activated receptors and liver X receptor-alpha in humans: No alteration in adipose tissue of obese and NIDDM patients. Diabetes. 46:1319–1327. 1997. View Article : Google Scholar : PubMed/NCBI

8 

Tachibana K, Yamasaki D, Ishimoto K and Doi T: The role of PPARs in cancer. PPAR Res. 2008.102737:2008.

9 

Koeffler HP: Peroxisome proliferator‑activated receptor gamma and cancers. Clin Cancer Res. 9:1–9. 2003.PubMed/NCBI

10 

Bermúdez V, Finol F, Parra N, Parra M, Pérez A, Peñaranda L, Vílchez D, Rojas J, Arráiz N and Velasco M: PPAR-gamma agonists and their role in type 2 diabetes mellitus management. Am J Ther. 17:274–283. 2010. View Article : Google Scholar : PubMed/NCBI

11 

Larsen TM, Toubro S and Astrup A: PPARgamma agonists in the treatment of type II diabetes: Is increased fatness commensurate with long‑term efficacy? Int J Obes Relat Metab Disord. 27:147–161. 2003. View Article : Google Scholar : PubMed/NCBI

12 

Kim HI and Ahn YH: Role of peroxisome proliferator-activated receptor-gamma in the glucose-sensing apparatus of liver and beta-cells. Diabetes. 53(Suppl 1): S60–S65. 2004. View Article : Google Scholar : PubMed/NCBI

13 

Blanquicett C, Roman J and Hart CM: Thiazolidinediones as anti-cancer agents. Cancer Ther. 6:25–34. 2008.PubMed/NCBI

14 

Joshi H, Pal T and Ramaa CS: A new dawn for the use of thiazolidinediones in cancer therapy. Expert Opin Investig Drugs. 23:501–510. 2014. View Article : Google Scholar : PubMed/NCBI

15 

Moore KJ, Rosen ED, Fitzgerald ML, Randow F, Andersson LP, Altshuler D, Milstone DS, Mortensen RM, Spiegelman BM and Freeman MW: The role of PPAR-gamma in macrophage differentiation and cholesterol uptake. Nat Med. 7:41–47. 2001. View Article : Google Scholar : PubMed/NCBI

16 

Villacorta L, Schopfer FJ, Zhang J, Freeman BA and Chen YE: PPARgamma and its ligands: Therapeutic implications in cardiovascular disease. Clin Sci (Lond). 116:205–218. 2009. View Article : Google Scholar

17 

Schopfer FJ, Lin Y, Baker PR, Cui T, Garcia-Barrio M, Zhang J, Chen K, Chen YE and Freeman BA: Nitrolinoleic acid: An endogenous peroxisome proliferator-activated receptor gamma ligand. Proc Natl Acad Sci USA. 102:2340–2345. 2005. View Article : Google Scholar : PubMed/NCBI

18 

Behl T, Kaur I, Goel H and Kotwani A: Implications of the endogenous PPAR-gamma ligand, 15-deoxy-delta-12, 14-pros-taglandin J2, in diabetic retinopathy. Life Sci. 153:93–99. 2016. View Article : Google Scholar : PubMed/NCBI

19 

Viswakarma N, Jia Y, Bai L, Vluggens A, Borensztajn J, Xu J and Reddy JK: Coactivators in PPAR-regulated gene expression. PPAR Res. 2010:2010. View Article : Google Scholar

20 

Berger J and Moller DE: The mechanisms of action of PPARs. Annu Rev Med. 53:409–435. 2002. View Article : Google Scholar : PubMed/NCBI

21 

Qi C, Zhu Y and Reddy JK: Peroxisome proliferator-activated receptors, coactivators, and downstream targets. Cell Biochem Biophys. 32:Spring;187–204. 2000. View Article : Google Scholar

22 

Bedford MT and Clarke SG: Protein arginine methylation in mammals: Who, what, and why. Mol Cell. 33:1–13. 2009. View Article : Google Scholar : PubMed/NCBI

23 

Blanc RS and Richard S: Arginine methylation: The coming of age. Mol Cell. 65:8–24. 2017. View Article : Google Scholar : PubMed/NCBI

24 

Bedford MT: Arginine methylation at a glance. J Cell Sci. 120:4243–4246. 2007. View Article : Google Scholar : PubMed/NCBI

25 

Jain K, Jin CY and Clarke SG: Epigenetic control via allosteric regulation of mammalian protein arginine methyltransferases. Proc Natl Acad Sci USA. 114:10101–10106. 2017. View Article : Google Scholar : PubMed/NCBI

26 

Boulanger MC, Liang C, Russell RS, Lin R, Bedford MT, Wainberg MA and Richard S: Methylation of Tat by PRMT6 regulates human immunodeficiency virus type 1 gene expression. J Virol. 79:124–131. 2005. View Article : Google Scholar :

27 

Frankel A, Yadav N, Lee J, Branscombe TL, Clarke S and Bedford MT: The novel human protein arginine N-methyltransferase PRMT6 is a nuclear enzyme displaying unique substrate specificity. J Biol Chem. 277:3537–3543. 2002. View Article : Google Scholar

28 

Guccione E, Bassi C, Casadio F, Martinato F, Cesaroni M, Schuchlautz H, Lüscher B and Amati B: Methylation of histone H3R2 by PRMT6 and H3K4 by an MLL complex are mutually exclusive. Nature. 449:933–937. 2007. View Article : Google Scholar : PubMed/NCBI

29 

Hyllus D, Stein C, Schnabel K, Schiltz E, Imhof A, Dou Y, Hsieh J and Bauer UM: PRMT6-mediated methylation of R2 in histone H3 antagonizes H3 K4 trimethylation. Genes Dev. 21:3369–3380. 2007. View Article : Google Scholar : PubMed/NCBI

30 

El-Andaloussi N, Valovka T, Toueille M, Steinacher R, Focke F, Gehrig P, Covic M, Hassa PO, Schär P, Hübscher U and Hottiger MO: Arginine methylation regulates DNA polymerase beta. Mol Cell. 22:51–62. 2006. View Article : Google Scholar : PubMed/NCBI

31 

Kim SN, Choi HY, Lee W, Park GM, Shin WS and Kim YK: Sargaquinoic acid and sargahydroquinoic acid from Sargassum yezoense stimulate adipocyte differentiation through PPARalpha/gamma activation in 3T3-L1 cells. FEBS Lett. 582:3465–3472. 2008. View Article : Google Scholar : PubMed/NCBI

32 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001. View Article : Google Scholar

33 

Eram MS, Shen Y, Szewczyk M, Wu H, Senisterra G, Li F, Butler KV, Kaniskan HÜ, Speed BA, Dela Seña C, et al: A potent, selective, and cell-active inhibitor of human type I protein arginine methyltransferases. ACS Chem Biol. 11:772–781. 2016. View Article : Google Scholar

34 

Yang Y and Bedford MT: Protein arginine methyltransferases and cancer. Nat Rev Cancer. 13:37–50. 2013. View Article : Google Scholar

35 

Cohen RN: Nuclear receptor corepressors and PPARgamma. Nucl Recept Signal. 4:e0032006. View Article : Google Scholar : PubMed/NCBI

36 

van Beekum O, Fleskens V and Kalkhoven E: Posttranslational modifications of PPAR-gamma: Fine-tuning the metabolic master regulator. Obesity (Silver Spring). 17:213–219. 2009. View Article : Google Scholar

37 

Brunmeir R and Xu F: Functional regulation of PPARs through post‑translational modifications. Int J Mol Sci. 19:2018. View Article : Google Scholar

38 

Quinn CE, Hamilton PK, Lockhart CJ and McVeigh GE: Thiazolidinediones: Effects on insulin resistance and the cardiovascular system. Br J Pharmacol. 153:636–645. 2008. View Article : Google Scholar

39 

Hauner H: The mode of action of thiazolidinediones. Diabetes Metab Res Rev. 18(Suppl 2): S10–S15. 2002. View Article : Google Scholar : PubMed/NCBI

40 

Rizos CV, Elisaf MS, Mikhailidis DP and Liberopoulos EN: How safe is the use of thiazolidinediones in clinical practice? Expert Opin Drug Saf. 8:15–32. 2009. View Article : Google Scholar : PubMed/NCBI

41 

Nesto RW, Bell D, Bonow RO, Fonseca V, Grundy SM, Horton ES, Le Winter M, Porte D, Semenkovich CF, Smith S, et al: Thiazolidinedione use, fluid retention, and congestive heart failure: A consensus statement from the American Heart Association and American Diabetes Association. Diabetes Care. 27:256–263. 2004. View Article : Google Scholar

Related Articles

Journal Cover

June 2019
Volume 43 Issue 6

Print ISSN: 1107-3756
Online ISSN:1791-244X

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Hwang, J.W., So, Y., Bae, G., Kim, S., & Kim, Y.K. (2019). Protein arginine methyltransferase 6 suppresses adipogenic differentiation by repressing peroxisome proliferator‑activated receptor γ activity. International Journal of Molecular Medicine, 43, 2462-2470. https://doi.org/10.3892/ijmm.2019.4147
MLA
Hwang, J. W., So, Y., Bae, G., Kim, S., Kim, Y. K."Protein arginine methyltransferase 6 suppresses adipogenic differentiation by repressing peroxisome proliferator‑activated receptor γ activity". International Journal of Molecular Medicine 43.6 (2019): 2462-2470.
Chicago
Hwang, J. W., So, Y., Bae, G., Kim, S., Kim, Y. K."Protein arginine methyltransferase 6 suppresses adipogenic differentiation by repressing peroxisome proliferator‑activated receptor γ activity". International Journal of Molecular Medicine 43, no. 6 (2019): 2462-2470. https://doi.org/10.3892/ijmm.2019.4147