Open Access

Human peripheral blood‑derived exosomes for microRNA delivery

  • Authors:
    • Ji‑Young Kang
    • Hyewon Park
    • Hyoeun Kim
    • Dasom Mun
    • Hyelim Park
    • Nuri Yun
    • Boyoung Joung
  • View Affiliations

  • Published online on: March 28, 2019     https://doi.org/10.3892/ijmm.2019.4150
  • Pages: 2319-2328
  • Copyright: © Kang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Exosomes serve important functions in cell‑to‑cell communication and biological functions by serving as a delivery cargo shuttle for various molecules. The application of an improved delivery method for microRNAs (miRNAs/miRs) may enhance their potential as a therapeutic tool in cardiac diseases. Thus, the present study investigated whether human peripheral blood‑derived exosomes may be used as a delivery cargo system for miRNAs, and whether the delivery of miR‑21 using a human peripheral blood derived‑exosome may influence the degree of remodeling following myocardial infarction (MI). In H9C2 and HL‑1 cells, miR‑21 expression was successfully regulated by treatment with human peripheral blood derived‑exosomes loaded with an miR‑21 mimic or inhibitor compared with untreated cells. In addition, the mRNA and protein expression levels of SMAD family member 7 (Smad7), phosphatase and tensin homolog (PTEN) and matrix metalloproteinase 2 (MMP2), which are involved in cardiac fibrosis, were associated with the uptake of miR‑21 mimic‑ or inhibitor‑loaded exosomes. Similarly, the in vivo mRNA and protein expression of Smad7, PTEN and MMP2 were altered following treatment with miR‑21 mimic‑ or inhibitor‑loaded exosomes. Furthermore, miR‑21 mimic‑loaded exosomes enhanced fibrosis, whereas miR‑21 inhibitor‑loaded exosomes reduced fibrosis in a mouse MI model. These results suggested that miRNA‑loaded human peripheral blood derived‑exosomes may be used as a therapeutic tool for cardiac diseases.

References

1 

Thygesen K, Alpert JS, Jaffe AS, Simoons ML, Chaitman BR and White HD: Third universal definition of myocardial infarction. J Am Coll Cardiol. 60:1581–1598. 2012. View Article : Google Scholar : PubMed/NCBI

2 

Swynghedauw B: Molecular mechanisms of myocardial remodeling. Physiol Rev. 79:215–262. 1999. View Article : Google Scholar : PubMed/NCBI

3 

Nian M, Lee P, Khaper N and Liu P: Inflammatory cytokines and postmyocardial infarction remodeling. Circ Res. 94:1543–1553. 2004. View Article : Google Scholar : PubMed/NCBI

4 

Sun M, Dawood F, Wen WH, Chen M, Dixon I, Kirshenbaum LA and Liu PP: Excessive tumor necrosis factor activation after infarction contributes to susceptibility of myocardial rupture and left ventricular dysfunction. Circulation. 110:3221–3228. 2004. View Article : Google Scholar : PubMed/NCBI

5 

Regula KM and Kirshenbaum LA: Apoptosis of ventricular myocytes: A means to an end. J Mol Cell Cardiol. 38:3–13. 2005. View Article : Google Scholar

6 

van den Borne SW, Diez J, Blankesteijn WM, Verjans J, Hofstra L and Narula J: Myocardial remodeling after infarction: The role of myofibroblasts. Nat Rev Cardiol. 7:30–37. 2010. View Article : Google Scholar

7 

Zamilpa R and Lindsey ML: Extracellular matrix turnover and signaling during cardiac remodeling following MI: Causes and consequences. J Mol Cell Cardiol. 48:558–563. 2010. View Article : Google Scholar :

8 

Fan Z and Guan J: Antifibrotic therapies to control cardiac fibrosis. Biomater Res. 20:132016. View Article : Google Scholar : PubMed/NCBI

9 

Urbanelli L, Magini A, Buratta S, Brozzi A, Sagini K, Polchi A, Tancini B and Emiliani C: Signaling pathways in exosomes biogenesis, secretion and fate. Genes (Basel). 4:152–170. 2013. View Article : Google Scholar

10 

Lin J, Li J, Huang B, Liu J, Chen X, Chen XM, Xu YM, Huang LF and Wang XZ: Exosomes: Novel biomarkers for clinical diagnosis. Scientific World Journal. 2015:6570862015. View Article : Google Scholar : PubMed/NCBI

11 

Ha D, Yang N and Nadithe V: Exosomes as therapeutic drug carriers and delivery vehicles across biological membranes: Current perspectives and future challenges. Acta Pharm Sin B. 6:287–296. 2016. View Article : Google Scholar : PubMed/NCBI

12 

Théry C, Zitvogel L and Amigorena S: Exosomes: Composition, biogenesis and function. Nat Rev Immunol. 2:569–579. 2002. View Article : Google Scholar : PubMed/NCBI

13 

Batrakova EV and Kim MS: Development and regulation of exosome-based therapy products. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 8:744–757. 2016. View Article : Google Scholar : PubMed/NCBI

14 

Batrakova EV and Kim MS: Using exosomes, naturally-equipped nanocarriers, for drug delivery. J Control Release. 219:396–405. 2015. View Article : Google Scholar : PubMed/NCBI

15 

Boon RA and Dimmeler S: MicroRNAs in myocardial infarction. Nat Rev Cardiol. 12:135–142. 2015. View Article : Google Scholar

16 

Sun T, Dong YH, Du W, Shi CY, Wang K, Tariq MA, Wang JX and Li PF: The role of microRNAs in myocardial infarction: From molecular mechanism to clinical application. Int J Mol Sci. 18:2017. View Article : Google Scholar

17 

Wang J, Huang W, Xu R, Nie Y, Cao X, Meng J, Xu X, Hu S and Zheng Z: MicroRNA-24 regulates cardiac fibrosis after myocardial infarction. J Cell Mol Med. 16:2150–2160. 2012. View Article : Google Scholar : PubMed/NCBI

18 

Roy S, Khanna S, Hussain SR, Biswas S, Azad A, Rink C, Gnyawali S, Shilo S, Nuovo GJ and Sen CK: MicroRNA expression in response to murine myocardial infarction: miR-21 regulates fibroblast metalloprotease-2 via phosphatase and tensin homologue. Cardiovasc Res. 82:21–29. 2009. View Article : Google Scholar : PubMed/NCBI

19 

Yuan J, Chen H, Ge D, Xu Y, Xu H, Yang Y, Gu M, Zhou Y, Zhu J, Ge T, et al: Mir-21 promotes cardiac fibrosis after myocardial infarction via targeting Smad7. Cell Physiol Biochem. 42:2207–2219. 2017. View Article : Google Scholar : PubMed/NCBI

20 

Thum T, Gross C, Fiedler J, Fischer T, Kissler S, Bussen M, Galuppo P, Just S, Rottbauer W, Frantz S, et al: MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature. 456:980–984. 2008. View Article : Google Scholar : PubMed/NCBI

21 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001. View Article : Google Scholar

22 

Park H, Ku SH, Park H, Hong J, Kim D, Choi BR, Pak HN, Lee MH, Mok H, Jeong JH, et al: RAGE siRNA-mediated gene silencing provides cardioprotection against ventricular arrhythmias in acute ischemia and reperfusion. J Control Release. 217:315–326. 2015. View Article : Google Scholar : PubMed/NCBI

23 

Bala S, Csak T, Momen-Heravi F, Lippai D, Kodys K, Catalano D, Satishchandran A, Ambros V and Szabo G: Biodistribution and function of extracellular miRNA-155 in mice. Sci Rep. 5:107212015. View Article : Google Scholar : PubMed/NCBI

24 

National Research Council (US) Institute for Laboratory Animal Research: Guide for the Care and Use of Laboratory Animals. National Academies Press; Washington, DC: 1996

25 

Bartel DP: MicroRNAs: Target recognition and regulatory functions. Cell. 136:215–233. 2009. View Article : Google Scholar : PubMed/NCBI

26 

Carthew RW and Sontheimer EJ: Origins and mechanisms of miRNAs and siRNAs. Cell. 136:642–655. 2009. View Article : Google Scholar : PubMed/NCBI

27 

Wang B, Hao J, Jones SC, Yee MS, Roth JC and Dixon IM: Decreased Smad 7 expression contributes to cardiac fibrosis in the infarcted rat heart. Am J Physiol Heart Circ Physiol. 282:H1685–H1696. 2002. View Article : Google Scholar : PubMed/NCBI

28 

Cheng Y and Zhang C: MicroRNA-21 in cardiovascular disease. J Cardiovasc Transl Res. 3:251–255. 2010. View Article : Google Scholar : PubMed/NCBI

29 

Oudit GY and Penninger JM: Cardiac regulation by phosphoinositide 3-kinases and PTEN. Cardiovasc Res. 82:250–260. 2009. View Article : Google Scholar : PubMed/NCBI

30 

Oudit GY, Sun H, Kerfant BG, Crackower MA, Penninger JM and Backx PH: The role of phosphoinositide-3 kinase and PTEN in cardiovascular physiology and disease. J Mol Cell Cardiol. 37:449–471. 2004. View Article : Google Scholar : PubMed/NCBI

31 

Tao H, Zhang JG, Qin RH, Dai C, Shi P, Yang JJ, Deng ZY and Shi KH: LncRNA GAS5 controls cardiac fibroblast activation and fibrosis by targeting miR-21 via PTEN/MMP-2 signaling pathway. Toxicology. 386:11–18. 2017. View Article : Google Scholar : PubMed/NCBI

32 

Chi JS and Kloner RA: Stress and myocardial infarction. Heart. 89:475–476. 2003. View Article : Google Scholar : PubMed/NCBI

33 

Travers JG, Kamal FA, Robbins J, Yutzey KE and Blaxall BC: Cardiac fibrosis: The fibroblast awakens. Circ Res. 118:1021–1040. 2016. View Article : Google Scholar : PubMed/NCBI

34 

Liu Gu H, Li Z, Xie Y, Yao Y, Zhu J, Xu Y, Dai J, Zhong Q, Zhu CH, et al: Serum-derived extracellular vesicles protect against acute myocardial infarction by regulating miR-21/PDCD4 signaling pathway. Front Physiol. 9:3482018. View Article : Google Scholar : PubMed/NCBI

35 

Khan M, Nickoloff E, Abramova T, Johnson J, Verma SK, Krishnamurthy P, Mackie AR, Vaughan E, Garikipati VN, Benedict C, et al: Embryonic stem cell-derived exosomes promote endogenous repair mechanisms and enhance cardiac function following myocardial infarction. Circ Res. 117:52–64. 2015. View Article : Google Scholar : PubMed/NCBI

36 

Catalanotto C, Cogoni C and Zardo G: MicroRNA in control of gene expression: An overview of nuclear functions. Int J Mol Sci. 17:2016. View Article : Google Scholar : PubMed/NCBI

37 

He He L, Lim X, de Stanchina LP, Xuan E, Liang Z, Xue Y, Zender W, Magnus L, Ridzon JD, et al: A microRNA component of the p53 tumour suppressor network. Nature. 447:1130–1134. 2007. View Article : Google Scholar : PubMed/NCBI

38 

Théry C: Exosomes: Secreted vesicles and intercellular communications. F100. Biol Rep. 3:152011.

39 

Zhang J, Li S, Li L, Li M, Guo C, Yao J and Mi S: Exosome and exosomal microRNA: Trafficking, sorting, and function. Genomics Proteomics Bioinformatics. 13:17–24. 2015. View Article : Google Scholar : PubMed/NCBI

40 

Syn NL, Wang L, Chow EK, Lim CT and Goh BC: Exosomes in cancer nanomedicine and immunotherapy: Prospects and challenges. Trends Biotechnol. 35:665–676. 2017. View Article : Google Scholar : PubMed/NCBI

41 

Usman WM, Pham TC, Kwok YY, Vu LT, Ma V, Peng B, Chan YS, Wei L, Chin SM, Azad A, et al: Efficient RNA drug delivery using red blood cell extracellular vesicles. Nat Commun. 9:23592018. View Article : Google Scholar : PubMed/NCBI

42 

Charoenviriyakul C, Takahashi Y, Morishita M, Matsumoto A, Nishikawa M and Takakura Y: Cell type-specific and common characteristics of exosomes derived from mouse cell lines: Yield, physicochemical properties, and pharmacokinetics. Eur J Pharm Sci. 96:316–322. 2017. View Article : Google Scholar

43 

Smyth T, Kullberg M, Malik N, Smith-Jones P, Graner MW and Anchordoquy TJ: Biodistribution and delivery efficiency of unmodified tumor-derived exosomes. J Control Release. 199:145–155. 2015. View Article : Google Scholar :

44 

Takahashi Y, Nishikawa M, Shinotsuka H, Matsui Y, Ohara S, Imai T and Takakura Y: Visualization and in vivo tracking of the exosomes of murine melanoma B16-BL6 cells in mice after intravenous injection. J Biotechnol. 165:77–84. 2013. View Article : Google Scholar : PubMed/NCBI

45 

Kim H, Yun N, Mun D, Kang JY, Lee SH, Park H, Park H and Joung B: Cardiac-specific delivery by cardiac tissue-targeting peptide-expressing exosomes. Biochem Biophys Res Commun. 499:803–808. 2018. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

June 2019
Volume 43 Issue 6

Print ISSN: 1107-3756
Online ISSN:1791-244X

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Kang, J., Park, H., Kim, H., Mun, D., Park, H., Yun, N., & Joung, B. (2019). Human peripheral blood‑derived exosomes for microRNA delivery. International Journal of Molecular Medicine, 43, 2319-2328. https://doi.org/10.3892/ijmm.2019.4150
MLA
Kang, J., Park, H., Kim, H., Mun, D., Park, H., Yun, N., Joung, B."Human peripheral blood‑derived exosomes for microRNA delivery". International Journal of Molecular Medicine 43.6 (2019): 2319-2328.
Chicago
Kang, J., Park, H., Kim, H., Mun, D., Park, H., Yun, N., Joung, B."Human peripheral blood‑derived exosomes for microRNA delivery". International Journal of Molecular Medicine 43, no. 6 (2019): 2319-2328. https://doi.org/10.3892/ijmm.2019.4150