Open Access

Detection of N6‑methyladenosine modification residues (Review)

  • Authors:
    • Wei Zhu
    • Jing‑Zi Wang
    • Zhiqiang Xu
    • Mengda Cao
    • Qiaoli Hu
    • Chen Pan
    • Miao Guo
    • Ji‑Fu Wei
    • Haiwei Yang
  • View Affiliations

  • Published online on: April 18, 2019     https://doi.org/10.3892/ijmm.2019.4169
  • Pages: 2267-2278
  • Copyright: © Zhu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Among a number of mRNA modifications, N6‑methyladenosine (m6A) modification is the most common type in eukaryotes and nuclear‑replicating viruses. m6A has a significant role in numerous cancer types, including leukemia, brain tumors, liver cancer, breast cancer and lung cancer. Although m6A methyltransferases are essential during RNA modifications, the biological functions of m6A and the underlying mechanisms remain to be fully elucidated, predominantly due to the limited detection methods for m6A. In the present review, the currently available m6A detection methods and the respective scope of their applications are presented to facilitate the further investigation of the roles of m6A in biological process.

References

1 

He C: Grand challenge commentary: RNA epigenetics. Nat Chem Biol. 6:863–865. 2010. View Article : Google Scholar : PubMed/NCBI

2 

Meye KD, Saletore Y, Zumbo P, Elemento O, Mason CE and Jaffrey SR: Comprehensive analysis of mRNA methylation reveals enrichment in 3′ UTRs and near stop codons. Cell. 149:1635–1646. 2012. View Article : Google Scholar

3 

Dominissini D, Moshitch-Moshkovitz S, Schwartz S, Salmon-Divon M, Ungar L, Osenberg S, Cesarkas K, Jacob-Hirsch J, Amariglio N, Kupiec M, et al: Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature. 485:201–206. 2012. View Article : Google Scholar : PubMed/NCBI

4 

Desrosiers R, Friderici K and Rottman F: Identification of methylated nucleosides in messenger RNA from novikoff hepatoma cells. Proc Natl Acad Sci USA. 71:3971–3975. 1974. View Article : Google Scholar : PubMed/NCBI

5 

Adams JM and Cory S: Modified nucleosides and bizarre 5′-termini in mouse myeloma mRNA. Nature. 255:28–33. 1975. View Article : Google Scholar : PubMed/NCBI

6 

Wei CM, Gershowitz A and Moss B: Methylated nucleotides block 5′ terminus of HeLa cell messenger RNA. Cell. 4:379–386. 1975. View Article : Google Scholar : PubMed/NCBI

7 

Narayan P and Rottman FM: Methylation of mRNA. Adv Enzymol Relat Areas Mol Biol. 65:255–285. 1992.PubMed/NCBI

8 

Dubin DT and Taylor RH: The methylation state of poly A-containing messenger RNA from cultured hamster cells. Nucleic Acids Res. 2:1653–1668. 1975. View Article : Google Scholar : PubMed/NCBI

9 

Haugland RA and Cline MG: Post-transcriptional modifications of oat coleoptile ribonucleic acids. 5′-Terminal capping and methylation of internal nucleosides in poly(A)-rich RNA. Eur J Biochem. 104:271–277. 1980. View Article : Google Scholar : PubMed/NCBI

10 

Niu Y, Zhao X, Wu YS, Li MM, Wang XJ and Yang YG: N6-methyl-adenosine (m6A) in RNA: An old modification with a novel epigenetic function. Genomics Proteomics Bioinformatics. 11:8–17. 2013. View Article : Google Scholar : PubMed/NCBI

11 

Bokar JA, Shambaugh ME, Polayes D, Matera AG and Rottman FM: Purification and cDNA cloning of the AdoMet-binding subunit of the human mRNA (N6-adenosine)-methyltransferase. RNA. 3:1233–1247. 1997.PubMed/NCBI

12 

Ping XL, Sun BF, Wang L, Xiao W, Yang X, Wang WJ, Adhikari S, Shi Y, Lv Y, Chen YS, et al: Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase. Cell Res. 24:177–189. 2014. View Article : Google Scholar : PubMed/NCBI

13 

Schwartz S, Mumbach MR, Jovanovic M, Wang T, Maciag K, Bushkin GG, Mertins P, Ter-Ovanesyan D, Habib N, Cacchiarelli D, et al: Perturbation of m6A writers reveals two distinct classes of mRNA methylation at internal and 5′ sites. Cell Rep. 8:284–296. 2014. View Article : Google Scholar : PubMed/NCBI

14 

Ear J and Lin S: RNA methylation regulates hematopoietic stem and progenitor cell development. J Genet Genomics. 44:473–474. 2017. View Article : Google Scholar : PubMed/NCBI

15 

Wang P, Doxtader KA and Nam Y: Structural basis for cooperative function of Mettl3 and Mettl14 methyltransferases. Mol Cell. 63:306–317. 2016. View Article : Google Scholar : PubMed/NCBI

16 

Patil DP, Chen CK, Pickering BF, Chow A, Jackson C, Guttman M and Jaffrey SR: m(6)A RNA methylation promotes XIST-mediated transcriptional repression. Nature. 537:369–373. 2016. View Article : Google Scholar : PubMed/NCBI

17 

Pendleton KE, Chen B, Liu K, Hunter OV, Xie Y, Tu BP and Conrad NK: The U6 snRNA m6A Methyltransferase METTL16 Regulates SAM Synthetase Intron Retention. Cell. 169:824–835.e814. 2017. View Article : Google Scholar

18 

Jia G, Fu Y, Zhao X, Dai Q, Zheng G, Yang Y, Yi C, Lindahl T, Pan T, Yang YG and He C: N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat Chem Bio. 7:885–887. 2011. View Article : Google Scholar

19 

Zheng G, Dahl JA, Niu Y, Fedorcsak P, Huang CM, Li CJ, Vågbø CB, Shi Y, Wang WL, Song SH, et al: ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Mol cell. 49:18–29. 2013. View Article : Google Scholar :

20 

Wang X, Zhao BS, Roundtree IA, Lu Z, Han D, Ma H, Weng X, Chen K, Shi H and He C: N(6)-methyladenosine modulates messenger RNA translation efficiency. Cell. 161:1388–1399. 2015. View Article : Google Scholar : PubMed/NCBI

21 

Wang X, Lu Z, Gomez A, Hon GC, Yue Y, Han D, Fu Y, Parisien M, Dai Q, Jia G, et al: N6-methyladenosine-dependent regulation of messenger RNA stability. Nature. 505:117–120. 2014. View Article : Google Scholar

22 

Xiao W, Adhikari S, Dahal U, Chen YS, Hao YJ, Sun BF, Sun HY, Li A, Ping XL, Lai WY, et al: Nuclear m(6)A reader YTHDC1 regulates mRNA splicing. Mol Cell. 61:507–519. 2016. View Article : Google Scholar : PubMed/NCBI

23 

Roundtree IA, Luo GZ, Zhang Z, Wang X, Zhou T, Cui Y, Sha J, Huang X, Guerrero L, Xie P, et al: YTHDC1 mediates nuclear export of N6-methyladenosine methylated mRNAs. Elife. 6:e313112017. View Article : Google Scholar

24 

Theler D, Dominguez C, Blatter M, Boudet J and Allain FH: Solution structure of the YTH domain in complex with N6-methyladenosine RNA: A reader of methylated RNA. Nucleic Acids Res. 42:13911–13919. 2014. View Article : Google Scholar : PubMed/NCBI

25 

Saletore Y, Meyer K, Korlach J, Vilfan ID, Jaffrey S and Mason CE: The birth of the Epitranscriptome: Deciphering the function of RNA modifications. Genome Biol. 13:1752012. View Article : Google Scholar : PubMed/NCBI

26 

Aschenbrenner J, Werner S, Marchand V, Adam M, Motorin Y, Helm M and Marx A: Engineering of a DNA polymerase for direct m6A sequencing. Angew Chem Int Ed Engl. 57:417–421. 2018. View Article : Google Scholar :

27 

Molinie B, Wang J, Lim KS, Hillebrand R, Lu ZX, Van Wittenberghe N, Howard BD, Daneshvar K, Mullen AC, Dedon P, et al: m6A level and isoform characterization sequencing (m6A-LAICseq) reveals the census and complexity of the m6A epitranscriptome. Nat Methods. 13:692–698. 2016. View Article : Google Scholar : PubMed/NCBI

28 

Nagarajan A, Janostiak R and Wajapeyee N: Dot blot analysis for measuring global N6-methyladenosine modification of RNA. Methods Mol Biol. 1870:263–271. 2019. View Article : Google Scholar

29 

Arguello AE, DeLiberto AN and Kleiner RE: RNA chemical proteomics reveals the N6-methyladenosine (m6A)-regulated protein-RNA interactome. J Am Chem Soc. 139:17249–17252. 2017. View Article : Google Scholar : PubMed/NCBI

30 

Yin H, Wang H, Jiang W, Zhou Y and Ai S: Electrochemical immunosensor for N6-methyladenosine detection in human cell lines based on biotin-streptavidin system and silver-SiO2 signal amplification. Biosens Bioelectron. 90:494–500. 2017. View Article : Google Scholar

31 

Linder B, Grozhik AV, Olarerin-George AO, Meydan C, Mason CE and Jaffrey SR: Single-nucleotide-resolution mapping of m6A and m6Am throughout the transcriptome. Nat Methods. 12:767–772. 2015. View Article : Google Scholar : PubMed/NCBI

32 

Weng Li Z, Su H, Weng R, Zuo X, Li Z, Huang C, Nachtergaele H, Dong S, Hu LC, et al: FTO plays an oncogenic role in acute myeloid leukemia as a N6-methyladenosine RNA demethylase. Cancer Cell. 31:127–141. 2017. View Article : Google Scholar

33 

Wang Y, Li Y, Yue M, Wang J, Kumar S, Wechsler-Reya RJ, Zhang Z, Ogawa Y, Kellis M, Duester G and Zhao JC: N6-methyladenosine RNA modification regulates embryonic neural stem cell self-renewal through histone modifications. Nat Neurosci. 21:195–206. 2018. View Article : Google Scholar : PubMed/NCBI

34 

Imanishi M, Tsuji S, Suda A and Futaki S: Detection of N6-methyladenosine based on the methyl-sensitivity of MazF RNA endonuclease. Chem Commun (Camb). 53:12930–12933. 2013. View Article : Google Scholar

35 

Mishima E, Jinno D, Akiyama Y, Itoh K, Nankumo S, Shima H, Kikuchi K, Takeuchi Y, Elkordy A, Suzuki T, et al: Immuno-Northern blotting: Detection of RNA modifications by using antibodies against modified nucleosides. PLoS One. 10:e01437562015. View Article : Google Scholar : PubMed/NCBI

36 

Mishima E and Abe T: Immuno-northern blotting: Detection of modified RNA using gel separation and antibodies to modified nucleosides. Methods Mol Biol. 1870:179–187. 2019. View Article : Google Scholar

37 

Chen W, Feng P, Ding H and Lin H: Identifying N6-methyladenosine sites in the Arabidopsis thaliana transcrip-tome. Mol Genet Genomics. 291:2225–2229. 2016. View Article : Google Scholar : PubMed/NCBI

38 

Golovina AY, Dzama MM, Petriukov KS, Zatsepin TS, Sergiev PV, Bogdanov AA and Dontsova OA: Method for site-specific detection of m6A nucleoside presence in RNA based on high-resolution melting (HRM) analysis. Nucleic Acids Res. 42:e27. 2013. View Article : Google Scholar : PubMed/NCBI

39 

Lopez CM, Lloyd AJ, Leonard K and Wilkinson MJ: Differential effect of three base modifications on DNA thermostability revealed by high resolution melting. Anal Chem. 84:7336–7342. 2012. View Article : Google Scholar : PubMed/NCBI

40 

Liu N, Parisien M, Dai Q, Zheng G, He C and Pan T: Probing N6-methyladenosine RNA modification status at single nucleotide resolution in mRNA and long noncoding RNA. RNA. 19:1848–1856. 2013. View Article : Google Scholar : PubMed/NCBI

41 

Jacob R, Zander S and Gutschner T: The dark side of the epitranscriptome: Chemical modifications in long non-coding RNAs. Int J Mol Sci. 18:E23872017. View Article : Google Scholar : PubMed/NCBI

42 

Li X, Zhu P, Ma S, Song J, Bai J, Sun F and Yi C: Chemical pulldown reveals dynamic pseudouridylation of the mammalian transcriptome. Nat Chem Biol. 11:592–597. 2015. View Article : Google Scholar : PubMed/NCBI

43 

Antanaviciute A, Baquero-Perez B, Watson CM, Harrison SM, Lascelles C, Crinnion L, Markham AF, Bonthron DT, Whitehouse A and Carr IM: M6aViewer: Software for the detection, analysis, and visualization of N6-methyladenosine peaks from m6A-seq/ME-RIP sequencing data. RNA. 23:1493–1501. 2017. View Article : Google Scholar : PubMed/NCBI

44 

Cui X, Meng J, Zhang S, Chen Y and Huang Y: A novel algorithm for calling mRNA m6A peaks by modeling biological variances in MeRIP-seq data. Bioinformatics. 32:i378-i3852016. View Article : Google Scholar : PubMed/NCBI

45 

Meng J, Lu Z, Liu H, Zhang L, Zhang S, Chen Y, Rao MK and Huang Y: A protocol for RNA methylation differential analysis with MeRIP-Seq data and exomePeak R/Bioconductor package. Methods. 69:274–281. 2014. View Article : Google Scholar : PubMed/NCBI

46 

Liu H, Wang H, Wei Z, Zhang S, Hua G, Zhang SW, Zhang L, Gao SJ, Meng J, Chen X and Huang Y: MeT-DB V2.0: Elucidating context-specific functions of N6-methyl-adenosine methyltran-scriptome. Nucleic Acids Res. 46:D281–D287. 2017. View Article : Google Scholar

47 

Zhou C, Molinie B, Daneshvar K, Pondick JV, Wang J, Van Wittenberghe N, Xing Y, Giallourakis CC and Mullen AC: Genome-wide maps of m6A circRNAs identify widespread and cell-type-specific methylation patterns that are distinct from mRNAs. Cell Rep. 20:2262–2276. 2017. View Article : Google Scholar : PubMed/NCBI

48 

Zhang M, Li Q and Xie Y: A Bayesian hierarchical model for analyzing methylated RNA immunoprecipitation sequencing data. Quant Biol. 6:275–286. 2018. View Article : Google Scholar

49 

Rana AP and Tuck MT: Analysis and in vitro localization of internal methylated adenine residues in dihydrofolate reductase mRNA. Nucleic Acids Res. 18:4803–4808. 1990. View Article : Google Scholar : PubMed/NCBI

50 

Ehrlich M, Gama-Sosa MA, Carreira LH, Ljungdahl LG, Kuo KC and Gehrke CW: DNA methylation in thermophilic bacteria: N4-methylcytosine, 5-methylcytosine, and N6-methyladenine. Nucleic Acids Res. 13:1399–1412. 1985. View Article : Google Scholar : PubMed/NCBI

51 

Clancy MJ, Shambaugh ME, Timpte CS and Bokar JA: Induction of sporulation in Saccharomyces cerevisiae leads to the formation of N6-methyladenosine in mRNA: A potential mechanism for the activity of the IME4 gene. Nucleic Acids Res. 30:4509–4518. 2002. View Article : Google Scholar : PubMed/NCBI

52 

Zhao X, Yang Y, Sun BF, Shi Y, Yang X, Xiao W, Hao YJ, Ping XL, Chen YS, Wang WJ, et al: FTO-dependent demethylation of N6-methyladenosine regulates mRNA splicing and is required for adipogenesis. Cell Res. 24:1403–1419. 2014. View Article : Google Scholar : PubMed/NCBI

53 

Barbieri I, Tzelepis K, Pandolfini L, Shi J, Millán-Zambrano G, Robson SC, Aspris D, Migliori V, Bannister AJ, Han N, et al: Promoter-bound METTL3 maintains myeloid leukaemia by m6A-dependent translation control. Nature. 552:126–131. 2017. View Article : Google Scholar : PubMed/NCBI

54 

Tang Li X, Huang J, Wang W, Li F, Qin P, Qin C, Zou Z, Wei Q, Hua JL, et al: The M6A methyltransferase METTL3: Acting as a tumor suppressor in renal cell carcinoma. Oncotarget. 8:96103–96116. 2017.PubMed/NCBI

55 

Miao Z, Xin N, Wei B, Hua X, Zhang G, Leng C, Zhao C, Wu D, Li J, Ge W, et al: 5-hydroxymethylcytosine is detected in RNA from mouse brain tissues. Brain Res. 1642:546–552. 2016. View Article : Google Scholar : PubMed/NCBI

56 

Rona G, Scheer I, Nagy K, Pálinkás HL, Tihanyi G, Borsos M, Békési A and Vértessy BG: Detection of uracil within DNA using a sensitive labeling method for in vitro and cellular applications. Nucleic Acids Res. 44:e282016. View Article : Google Scholar :

57 

Wehr NB and Levine RL: Quantitation of protein carbonylation by dot blot. Anal Biochem. 423:241–245. 2012. View Article : Google Scholar : PubMed/NCBI

58 

Jaffrey SR and Kharas MG: Emerging links between m6A and misregulated mRNA methylation in cancer. Genome Med. 9:22017. View Article : Google Scholar :

59 

Kwok CT, Marshall AD, Rasko JE and Wong JJ: Genetic alterations of m6A regulators predict poorer survival in acute myeloid leukemia. J Hematol Oncol. 10:392017. View Article : Google Scholar

60 

Zhang C, Zhi WI, Lu H, Samanta D, Chen I, Gabrielson E and Semenza GL: Hypoxia-inducible factors regulate pluripotency factor expression by ZNF217- and ALKBH5-mediated modulation of RNA methylation in breast cancer cells. Oncotarget. 7:64527–64542. 2016.PubMed/NCBI

61 

Inouye M: The discovery of mRNA interferases: Implication in bacterial physiology and application to biotechnology. J Cell Physiol. 209:670–676. 2006. View Article : Google Scholar : PubMed/NCBI

62 

Gerstberger S, Hafner M and Tuschl T: A census of human RNA-binding proteins. Nat Rev Genet. 15:829–845. 2014. View Article : Google Scholar : PubMed/NCBI

63 

Licatalosi DD, Mele A, Fak JJ, Ule J, Kayikci M, Chi SW, Clark TA, Schweitzer AC, Blume JE, Wang X, et al: HITS-CLIP yields genome-wide insights into brain alternative RNA processing. Nature. 456:464–469. 2008. View Article : Google Scholar : PubMed/NCBI

64 

Dubinsky L, Krom BP and Meijler MM: Diazirine based photoaffinity labeling. Bioorg Med Chem. 20:554–570. 2012. View Article : Google Scholar

65 

Kauer JC, Erickson-Viitanen S, Wolfe HR Jr and DeGrado WF: p-benzoyl-L-phenylalanine, a new photoreactive amino acid. Photolabeling of calmodulin with a synthetic calmodulin-binding peptide. J Biol Chem. 261:10695–10700. 1986.PubMed/NCBI

66 

Zhu T, Roundtree IA, Wang P, Wang X, Wang L, Sun C, Tian Y, Li J, He C and Xu Y: Crystal structure of the YTH domain of YTHDF2 reveals mechanism for recognition of N6-methyladenosine. Cell Res. 24:1493–1496. 2014. View Article : Google Scholar : PubMed/NCBI

67 

Xu C, Wang X, Liu K, Roundtree IA, Tempel W, Li Y, Lu Z, He C and Min J: Structural basis for selective binding of m6A RNA by the YTHDC1 YTH domain. Nat Chem Biol. 10:927–929. 2014. View Article : Google Scholar : PubMed/NCBI

68 

Shi H, Wang X, Lu Z, Zhao BS, Ma H, Hsu PJ, Liu C and He C: YTHDF3 facilitates translation and decay of N6-methyladenosine-modified RNA. Cell Res. 27:315–328. 2017. View Article : Google Scholar : PubMed/NCBI

69 

Luo GZ, MacQueen A, Zheng G, Duan H, Dore LC, Lu Z, Liu J, Chen K, Jia G, Bergelson J and He C: Unique features of the m6A methylome i. Arabidopsis thaliana Nat Commun. 5:56302014. View Article : Google Scholar

70 

Piekna-Przybylska D, Decatur WA and Fournier MJ: The 3D rRNA modification maps database: With interactive tools for ribosome analysis. Nucleic Acids Res. 36:D178–D183. 2008. View Article : Google Scholar :

71 

Wang Y, Li Y, Toth JI, Petroski MD, Zhang Z and Zhao JC: N6-methyladenosine modification destabilizes developmental regulators in embryonic stem cells. Nat Cell Biol. 16:191–198. 2014. View Article : Google Scholar : PubMed/NCBI

72 

Meyer KD, Patil DP, Zhou J, Zinoviev A, Skabkin MA, Elemento O, Pestova TV, Qian SB and Jaffrey SR: 5′ UTR m(6)a promotes cap-independent translation. Cell. 163:999–1010. 2015. View Article : Google Scholar : PubMed/NCBI

73 

Lin S, Choe J, Du P, Triboulet R and Gregory RI: The m(6)a methyltransferase Mettl3 promotes translation in human cancer cells. Mol Cell. 62:335–345. 2016. View Article : Google Scholar : PubMed/NCBI

74 

Fu Y, Dominissini D, Rechavi G and He C: Gene expression regulation mediated through reversible m6A RNA methylation. Nat Rev Genet. 15:293–306. 2014. View Article : Google Scholar : PubMed/NCBI

75 

Cai X, Wang X, Cao C, Gao Y, Zhang S, Yang Z, Liu Y, Zhang X, Zhang W and Ye L: HBXIP-elevated methyltransferase METTL3 promotes the progression of breast cancer via inhibiting tumor suppressor let-7g. Cancer Lett. 415:11–19. 2018. View Article : Google Scholar

76 

Cui Q, Shi H, Ye P, Li L, Qu Q, Sun G, Sun G, Lu Z, Huang Y, Yang CG, et al: m6A RNA methylation regulates the self-renewal and tumorigenesis of glioblastoma stem cells. Cell Rep. 18:2622–2634. 2017. View Article : Google Scholar : PubMed/NCBI

77 

Li Y, Zheng D, Wang F, Xu Y, Yu H and Zhang H: Expression of demethylase genes, fto and alkbh1, is associated with prognosis of gastric cancer. Dig Dis Sci. 2019. View Article : Google Scholar

78 

Wang X, Li Z, Kong B, Song C, Cong J, Hou J and Wang S: Reduced m6A mRNA methylation is correlated with the progression of human cervical cancer. Oncotarget. 8:98918–98930. 2017.PubMed/NCBI

79 

Zhou J, Wang J, Hong B, Ma K, Xie H, Li L, Zhang K, Zhou B, Cai L and Gong K: Gene signatures and prognostic values of m6A regulators in clear cell renal cell carcinoma-a retrospective study using TCGA database. Aging (Albany NY). 11:1633–1647. 2019. View Article : Google Scholar

80 

Chen M, Wei L, Law CT, Tsang FH, Shen J, Cheng CL, Tsang LH, Ho DW, Chiu DK, Lee JM, et al: RNA N6-methyladenosine methyltransferase-like 3 promotes liver cancer progression through YTHDF2-dependent posttranscriptional silencing of SOCS2. Hepatology. 67:2254–2270. 2018. View Article : Google Scholar

Related Articles

Journal Cover

June 2019
Volume 43 Issue 6

Print ISSN: 1107-3756
Online ISSN:1791-244X

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Zhu, W., Wang, J., Xu, Z., Cao, M., Hu, Q., Pan, C. ... Yang, H. (2019). Detection of N6‑methyladenosine modification residues (Review). International Journal of Molecular Medicine, 43, 2267-2278. https://doi.org/10.3892/ijmm.2019.4169
MLA
Zhu, W., Wang, J., Xu, Z., Cao, M., Hu, Q., Pan, C., Guo, M., Wei, J., Yang, H."Detection of N6‑methyladenosine modification residues (Review)". International Journal of Molecular Medicine 43.6 (2019): 2267-2278.
Chicago
Zhu, W., Wang, J., Xu, Z., Cao, M., Hu, Q., Pan, C., Guo, M., Wei, J., Yang, H."Detection of N6‑methyladenosine modification residues (Review)". International Journal of Molecular Medicine 43, no. 6 (2019): 2267-2278. https://doi.org/10.3892/ijmm.2019.4169