Open Access

Sirt1 promotes autophagy and inhibits apoptosis to protect cardiomyocytes from hypoxic stress

  • Authors:
    • Guiping Luo
    • Zhao Jian
    • Yun Zhu
    • Yu Zhu
    • Baicheng Chen
    • Ruiyan Ma
    • Fuqin Tang
    • Yingbin Xiao
  • View Affiliations

  • Published online on: March 6, 2019     https://doi.org/10.3892/ijmm.2019.4125
  • Pages: 2033-2043
  • Copyright: © Luo et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Sirtuin 1 (Sirt1) exerts its cardioprotective effects in various cardiovascular diseases via multiple cellular activities. However, the therapeutic implications of Sirt1 in hypoxic cardiomyocytes and the underlying mechanisms remain elusive. The present study investigated whether Sirt1 regulates autophagy and apoptosis in hypoxic H9C2 cardiomyocytes and in an experimental hypoxic mouse model. Right ventricular outflow tract biopsies were obtained from patients with cyanotic or acyanotic congenital heart diseases. Adenovirus Ad‑Sirt1 was used to activate Sirt1 and Ad‑Sh‑Sirt1 was used to inhibit Sirt1 expression in H9C2 cells, in order to investigate the effect of Sirt1 on cellular autophagy and apoptosis. SRT1720, a pharmacological activator of Sirt1 and EX‑527, a Sirt1 antagonist, were administered to mice to explore the role of Sirt1 in hypoxic cardiomyocytes in vivo. The levels of autophagy and apoptosis‑related proteins were evaluated using western blotting. Apoptosis was investigated by TUNEL staining and Annexin V/7‑aminoactinomycin D flow cytometry analysis. Heart tissue samples from cyanotic patients exhibited increased autophagy and apoptosis, as well as elevated Sirt1 levels, compared with the noncyanotic control samples. The data from the western blot analysis revealed that Sirt1 promoted autophagic flux and reduced apoptosis in hypoxic H9C2 cells. In addition, Sirt1 activated AMP‑activated protein kinase (AMPK), and the AMPK inhibitor Compound C abolished the effect of Sirt1 on autophagy activation. Further exploration of the mechanism revealed that Sirt1 protects hypoxic cardiomyocytes from apoptosis, at least in part, through inositol requiring kinase enzyme 1α (IRE1α). Consistent with the in vitro results, treatment with the Sirt1 activator SRT1720 activated AMPK, inhibited IRE1α, enhanced autophagy, and decreased apoptosis in the heart tissues of normoxic mice compared with the hypoxia control group. Opposite changes were observed in hypoxic mice treated with the Sirt1 inhibitor EX‑527. These results suggested that Sirt1 promoted autophagy via AMPK activation and reduced hypoxia‑induced apoptosis via the IRE1α pathway, to protect cardiomyocytes from hypoxic stress.

References

1 

Anastasiou D and Krek W: SIRT1: Linking adaptive cellular responses to aging-associated changes in organismal physiology. Physiology (Bethesda). 21:404–410. 2006.

2 

Liu L, Liu C, Zhang Q, Shen J, Zhang H, Shan J, Duan G, Guo D, Chen X, Cheng J, et al: SIRT1-mediated transcriptional regulation of SOX2 is important for self-renewal of liver cancer stem cells. Hepatology. 64:814–827. 2016. View Article : Google Scholar : PubMed/NCBI

3 

Hariharan N, Maejima Y, Nakae J, Paik J, Depinho RA and Sadoshima J: Deacetylation of FoxO by Sirt1 plays an essential role in mediating starvation-induced autophagy in cardiac myocytes. Cir Res. 107:1470–1482. 2010. View Article : Google Scholar

4 

Liu B, Ghosh S, Yang X, Zheng H, Liu X, Wang Z, Jin G, Zheng B, Kennedy BK, Suh Y, et al: Resveratrol rescues SIRT1-dependent adult stem cell decline and alleviates progeroid features in laminopathy-based progeria. Cell Metab. 16:738–750. 2012. View Article : Google Scholar : PubMed/NCBI

5 

Yang Y, Duan W, Li Y, Jin Z, Yan J, Yu S and Yi D: Novel role of silent information regulator 1 in myocardial ischemia. Circulation. 128:2232–2240. 2013. View Article : Google Scholar : PubMed/NCBI

6 

Alcendor RR, Gao S, Zhai P, Zablocki D, Holle E, Yu X, Tian B, Wagner T, Vatner SF and Sadoshima J: Sirt1 regulates aging and resistance to oxidative stress in the heart. Circ Res. 100:1512–1521. 2007. View Article : Google Scholar : PubMed/NCBI

7 

Ding C, Zou Q, Wang F, Wu H, Wang W, Li H and Huang B: HGF and BFGF secretion by human adipose-derived stem cells improves ovarian function during natural aging via activation of the SIRT1/FOXO1 signaling pathway. Cell Physiol Biochem. 45:1316–1332. 2018. View Article : Google Scholar : PubMed/NCBI

8 

Hsu CP, Zhai P, Yamamoto T, Maejima Y, Matsushima S, Hariharan N, Shao D, Takagi H, Oka S and Sadoshima J: Silent information regulator 1 protects the heart from ischemia/reperfusion. Circulation. 122:2170–2182. 2010. View Article : Google Scholar : PubMed/NCBI

9 

He S, Liu P, Jian Z, Li J, Zhu Y, Feng Z and Xiao Y: miR-138 protects cardiomyocytes from hypoxia-induced apoptosis via MLK3/JNK/c-jun pathway. Biochem Biophys Res Commun. 441:763–769. 2013. View Article : Google Scholar : PubMed/NCBI

10 

Lim JH, Lee YM, Chun YS, Chen J, Kim JE and Park JW: Sirtuin 1 modulates cellular responses to hypoxia by deacetylating hypoxia-inducible factor 1alpha. Mol Cell. 38:864–878. 2010. View Article : Google Scholar : PubMed/NCBI

11 

Dioum EM, Chen R, Alexander MS, Zhang Q, Hogg RT, Gerard RD and Garcia JA: Regulation of hypoxia-inducible factor 2alpha signaling by the stress-responsive deacetylase sirtuin 1. Science. 324:1289–1293. 2009. View Article : Google Scholar : PubMed/NCBI

12 

Rabinowitz JD and White E: Autophagy and metabolism. Science. 330:1344–1348. 2010. View Article : Google Scholar : PubMed/NCBI

13 

Nakai A, Yamaguchi O, Takeda T, Higuchi Y, Hikoso S, Taniike M, Omiya S, Mizote I, Matsumura Y, Asahi M, et al: The role of autophagy in cardiomyocytes in the basal state and in response to hemodynamic stress. Nat Med. 13:619–624. 2007. View Article : Google Scholar : PubMed/NCBI

14 

Liu L, Jin X, Hu CF, Li R, Zhou Z and Shen CX: Exosomes derived from mesenchymal stem cells rescue myocardial ischaemia/reperfusion injury by inducing cardiomyocyte autophagy Via AMPK and Akt pathways. Cell Physiol Biochem. 43:52–68. 2017. View Article : Google Scholar : PubMed/NCBI

15 

Zhang H, Liu B, Li T, Zhu Y, Luo G, Jiang Y, Tang F, Jian Z and Xiao Y: AMPK activation serves a critical role in mitochondria quality control via modulating mitophagy in the heart under chronic hypoxia. Int J Mol Med. 41:69–76. 2018.

16 

Kim J, Kundu M, Viollet B and Guan KL: AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol. 13:132–141. 2011. View Article : Google Scholar : PubMed/NCBI

17 

Shore GC, Papa FR and Oakes SA: Signaling cell death from the endoplasmic reticulum stress response. Curr Opin Cell Biol. 23:143–149. 2011. View Article : Google Scholar :

18 

Zhao W, Han F and Shi Y: IRE1alpha pathway of endoplasmic reticulum stress induces neuronal apoptosis in the locus coeruleus of rats under single prolonged stress. Prog Neuropsychopharmacol Biol Psychiatry. 69:11–18. 2016. View Article : Google Scholar : PubMed/NCBI

19 

Brozzi F, Nardelli TR, Lopes M, Millard I, Barthson J, Igoillo-Esteve M, Grieco FA, Villate O, Oliveira JM, Casimir M, et al: Cytokines induce endoplasmic reticulum stress in human, rat and mouse beta cells via different mechanisms. Diabetologia. 58:2307–2316. 2015. View Article : Google Scholar : PubMed/NCBI

20 

Brozzi F, Gerlo S, Grieco FA, Juusola M, Balhuizen A, Lievens S, Gysemans C, Bugliani M, Mathieu C, Marchetti P, et al: Ubiquitin D regulates IRE1α/c-Jun N-terminal Kinase (JNK) protein-dependent apoptosis in pancreatic beta cells. J Biol Chem. 291:12040–12056. 2016. View Article : Google Scholar : PubMed/NCBI

21 

Jain K, Suryakumar G, Ganju L and Singh SB: Amelioration of ER stress by 4-phenylbutyric acid reduces chronic hypoxia induced cardiac damage and improves hypoxic tolerance through upregulation of HIF-1α. Vascul Pharmacol. 83:36–46. 2016. View Article : Google Scholar : PubMed/NCBI

22 

Liu B, Zhang HG, Zhu Y, Jiang YH, Luo GP, Tang FQ, Jian Z and Xiao YB: Cardiac resident macrophages are involved in hypoxiainduced postnatal cardiomyocyte proliferation. Mol Med Rep. 15:3541–3548. 2017. View Article : Google Scholar : PubMed/NCBI

23 

Zheng W, Lu YB, Liang ST, Zhang QJ, Xu J, She ZG, Zhang ZQ, Yang RF, Mao BB, Xu Z, et al: SIRT1 mediates the protective function of Nkx2.5 during stress in cardiomyocytes. Basic Res Cardiol. 108:3642013. View Article : Google Scholar : PubMed/NCBI

24 

Sommer RJ, Hijazi ZM and Rhodes JF: Pathophysiology of congenital heart disease in the adult: Part III: Complex congenital heart disease. Circulation. 117:1340–1350. 2008. View Article : Google Scholar : PubMed/NCBI

25 

Zhu L, Wang Q, Zhang L, Fang Z, Zhao F, Lv Z, Gu Z, Zhang J, Wang J, Zen K, et al: Hypoxia induces PGC-1alpha expression and mitochondrial biogenesis in the myocardium of TOF patients. Cell Res. 20:676–687. 2010. View Article : Google Scholar : PubMed/NCBI

26 

Zhu Y, Feng Z, Jian Z and Xiao Y: Long noncoding RNA TUG1 promotes cardiac fibroblast transformation to myofibroblasts via miR29c in chronic hypoxia. Mol Med Rep. 18:3451–3460. 2018.PubMed/NCBI

27 

Yan J, Duan J, Wu X, Guo C, Yin Y, Zhu Y, Hu T, Wei G, Wen A and Xi M: Total saponins from Aralia taibaiensis protect against myocardial ischemia/reperfusion injury through AMPK pathway. Int J Mol Med. 36:1538–1546. 2015. View Article : Google Scholar : PubMed/NCBI

28 

Gu Y, Gao L, Chen Y, Xu Z, Yu K, Zhang D, Zhang G and Zhang X: Sanggenon C protects against cardiomyocyte hypoxia injury by increasing autophagy. Mol Med Rep. 16:8130–8136. 2017. View Article : Google Scholar : PubMed/NCBI

29 

Liu MH, Lin XL, Guo DM, Zhang Y, Yuan C, Tan TP, Chen YD, Wu SJ, Ye ZF and He J: Resveratrol protects cardiomyocytes from doxorubicin-induced apoptosis through the AMPK/P53 pathway. Mol Med Rep. 13:1281–1286. 2016. View Article : Google Scholar

30 

Hamid T, Gu Y, Ortines RV, Bhattacharya C, Wang G, Xuan YT and Prabhu SD: Divergent tumor necrosis factor receptor-related remodeling responses in heart failure: Role of nuclear factor-kappaB and inflammatory activation. Circulation. 119:1386–1397. 2009. View Article : Google Scholar : PubMed/NCBI

31 

Milne JC, Lambert PD, Schenk S, Carney DP, Smith JJ, Gagne DJ, Jin L, Boss O, Perni RB, Vu CB, et al: Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes. Nature. 450:712–716. 2007. View Article : Google Scholar : PubMed/NCBI

32 

Vachharajani VT, Liu T, Brown CM, Wang X, Buechler NL, Wells JD, Yoza BK and McCall CE: SIRT1 inhibition during the hypoinflammatory phenotype of sepsis enhances immunity and improves outcome. J Leukoc Biol. 96:785–796. 2014. View Article : Google Scholar : PubMed/NCBI

33 

Song S, Tan J, Miao Y, Li M and Zhang Q: Crosstalk of autophagy and apoptosis: Involvement of the dual role of autophagy under ER stress. J Cell Physiol. 232:2977–2984. 2017. View Article : Google Scholar : PubMed/NCBI

34 

Thorburn A: Apoptosis and autophagy: Regulatory connections between two supposedly different processes. Apoptosis. 13:1–9. 2008. View Article : Google Scholar :

Related Articles

Journal Cover

May 2019
Volume 43 Issue 5

Print ISSN: 1107-3756
Online ISSN:1791-244X

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Luo, G., Jian, Z., Zhu, Y., Zhu, Y., Chen, B., Ma, R. ... Xiao, Y. (2019). Sirt1 promotes autophagy and inhibits apoptosis to protect cardiomyocytes from hypoxic stress. International Journal of Molecular Medicine, 43, 2033-2043. https://doi.org/10.3892/ijmm.2019.4125
MLA
Luo, G., Jian, Z., Zhu, Y., Zhu, Y., Chen, B., Ma, R., Tang, F., Xiao, Y."Sirt1 promotes autophagy and inhibits apoptosis to protect cardiomyocytes from hypoxic stress". International Journal of Molecular Medicine 43.5 (2019): 2033-2043.
Chicago
Luo, G., Jian, Z., Zhu, Y., Zhu, Y., Chen, B., Ma, R., Tang, F., Xiao, Y."Sirt1 promotes autophagy and inhibits apoptosis to protect cardiomyocytes from hypoxic stress". International Journal of Molecular Medicine 43, no. 5 (2019): 2033-2043. https://doi.org/10.3892/ijmm.2019.4125