Downregulation of miR‑21 suppresses 1‑methyl‑4‑phenylpyridinium‑induced neuronal damage in MES23.5 cells

  • Authors:
    • Huawu Mao
    • Lidong Ding
  • View Affiliations

  • Published online on: August 5, 2019     https://doi.org/10.3892/etm.2019.7853
  • Pages: 2467-2474
  • Copyright: © Mao et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Accumulating evidence suggests that overproduction of oxidative stress, increases neuroinflammation and activates apoptosis. These two processes are associated with the development of Parkinson's disease (PD). The present study aimed to investigate the role of miR‑21 in the development of PD. 1‑Methyl‑4‑phenylpyridinium (MPP+) was used to induce a PD‑like model in MES23.5 cells. The results of the reverse transcription‑quantitative PCR assays indicated that miR‑21 levels were markedly increased in MES23.5 cells following MPP+ treatment. Furthermore, MES23.5 cells were transfected with miR‑21 inhibitor, mimics and/or relevant negative control, following MPP+ administration. The results of the functional assays revealed that downregulation of miR‑21 significantly attenuated the induction of cell apoptosis and reactive oxygen species (ROS) production, while it enhanced the survival of MPP+‑induced MES23.5 cells. Furthermore, downregulation of miR‑21 increased the expression levels of tyrosine hydroxylase, whereas suppression of miR‑21 inhibited the production of pro‑inflammatory cytokines [interleukin (IL)‑6, IL‑1β and tumor necrosis factor‑α] in MES23.5 cells. Western blot analysis further indicated that the Bcl‑2/Bax protein expression ratio was significantly increased and double luciferase assay analysis confirmed that Bcl‑2 was a direct target of miR‑21. Taken collectively, the data demonstrated that downregulation of miR‑21 protected cells from MPP+‑mediated cytotoxicity by the inhibition of apoptosis induction, the reduction of the inflammatory response and the suppression of ROS production. The present findings may provide novel approaches for PD clinical treatment.

Related Articles

Journal Cover

October 2019
Volume 18 Issue 4

Print ISSN: 1792-0981
Online ISSN:1792-1015

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Mao, H., & Mao, H. (2019). Downregulation of miR‑21 suppresses 1‑methyl‑4‑phenylpyridinium‑induced neuronal damage in MES23.5 cells. Experimental and Therapeutic Medicine, 18, 2467-2474. https://doi.org/10.3892/etm.2019.7853
MLA
Mao, H., Ding, L."Downregulation of miR‑21 suppresses 1‑methyl‑4‑phenylpyridinium‑induced neuronal damage in MES23.5 cells". Experimental and Therapeutic Medicine 18.4 (2019): 2467-2474.
Chicago
Mao, H., Ding, L."Downregulation of miR‑21 suppresses 1‑methyl‑4‑phenylpyridinium‑induced neuronal damage in MES23.5 cells". Experimental and Therapeutic Medicine 18, no. 4 (2019): 2467-2474. https://doi.org/10.3892/etm.2019.7853