Supplementation of triple viable probiotics combined with dietary intervention is associated with gut microbial improvement in humans on a high‑fat diet

  • Authors:
    • Leimin Qian
    • Renyuan Gao
    • Jianming Huang
    • Huanlong Qin
  • View Affiliations

  • Published online on: July 23, 2019     https://doi.org/10.3892/etm.2019.7801
  • Pages: 2262-2270
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Numerous animal studies have demonstrated that oral probiotics may have a beneficial role in preventing obesity, inflammatory bowel disease and even colorectal cancer, which are all associated with a high‑fat diet (HFD). However, the underlying beneficial effects of combined probiotic and dietary intervention on the gut microbiota of ‘non‑patient’ individuals previously on an HFD have yet to be fully elucidated. In the present study, fecal samples were obtained from 36 volunteers on a high‑fat diet and after dietary intervention for 4 months, and 16S rDNA sequencing was applied to identify how probiotics and dietary intervention had altered the composition of the microbiota. The results demonstrated that probiotics treatment and dietary intervention in combination raised the diversity of lumen microbes compared with their individual applications. A markedly separated distribution (β‑diversity) was observed, confirming the difference in gut microbiota composition among the treatment groups. Bacterial taxonomic analysis demonstrated that the relative abundance of 30 species was altered among the groups following dietary intervention and/or probiotic supplementation. The majority of the species that exhibited a population increase belonged to two butyrate‑producing families, Ruminococcaceae and Lachnospiraceae, whereas the species with reduced populations mainly belonged to the Bacteroidaceae family. Collectively, these results suggest that combined probiotic and dietary intervention is able to improve the gut microbiota composition of human subjects on an HFD.

References

1 

Zoetendal EG, Rajilic-Stojanovic M and de Vos WM: High-throughput diversity and functionality analysis of the gastrointestinal tract microbiota. Gut. 57:1605–1615. 2008. View Article : Google Scholar : PubMed/NCBI

2 

Zoetendal EG, Raes J, van den Bogert B, Arumugam M, Booijink CC, Troost FJ, Bork P, Wels M, de Vos WM and Kleerebezem M: The human small intestinal microbiota is driven by rapid uptake and conversion of simple carbohydrates. ISME J. 6:1415–1426. 2012. View Article : Google Scholar : PubMed/NCBI

3 

Hooper LV, Midtvedt T and Gordon JI: How host-microbial interactions shape the nutrient environment of the mammalian intestine. Annu Rev Nutr. 22:283–307. 2002. View Article : Google Scholar : PubMed/NCBI

4 

Backhed F, Ley RE, Sonnenburg JL, Peterson DA and Gordon JI: Host-bacterial mutualism in the human intestine. Science. 307:1915–1920. 2005. View Article : Google Scholar : PubMed/NCBI

5 

Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, Nielsen T, Pons N, Levenez F, Yamada T, et al: A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 464:59–65. 2010. View Article : Google Scholar : PubMed/NCBI

6 

Lin CS, Chang CJ, Lu CC, Martel J, Ojcius DM, Ko YF, Young JD and Lai HC: Impact of the gut microbiota, prebiotics, and probiotics on human health and disease. Biomed J. 37:259–268. 2014. View Article : Google Scholar : PubMed/NCBI

7 

Brown K, DeCoffe D, Molcan E and Gibson DL: Diet-induced dysbiosis of the intestinal microbiota and the effects on immunity and disease. Nutrients. 4:1095–1119. 2012. View Article : Google Scholar : PubMed/NCBI

8 

Abu-Shanab A and Quigley EM: The role of the gut microbiota in nonalcoholic fatty liver disease. Nat Rev Gastroenterol Hepatol. 7:691–701. 2010. View Article : Google Scholar : PubMed/NCBI

9 

Chiu CC, Ching YH, Li YP, Liu JY, Huang YT, Huang YW, Yang SS, Huang WC and Chuang HL: Nonalcoholic fatty liver disease is exacerbated in High-Fat Diet-Fed gnotobiotic mice by colonization with the Gut Microbiota from patients with nonalcoholic steatohepatitis. Nutrients. 9:E12202017. View Article : Google Scholar : PubMed/NCBI

10 

Federico A, Dallio M, Caprio GG, Ormando VM and Loguercio C: Gut microbiota and the liver. Minerva Gastroenterol Dietol. 63:385–398. 2017.PubMed/NCBI

11 

Budden KF, Gellatly SL, Wood DL, Cooper MA, Morrison M, Hugenholtz P and Hansbro PM: Emerging pathogenic links between microbiota and the gut-lung axis. Nat Rev Microbiol. 15:55–63. 2017. View Article : Google Scholar : PubMed/NCBI

12 

Bercik P: The microbiota-gut-brain axis: Learning from intestinal bacteria? Gut. 60:288–289. 2011. View Article : Google Scholar : PubMed/NCBI

13 

Collins SM and Bercik P: Gut microbiota: Intestinal bacteria influence brain activity in healthy humans. Nat Rev Gastroenterol Hepatol. 10:326–327. 2013. View Article : Google Scholar : PubMed/NCBI

14 

Bienenstock J, Kunze W and Forsythe P: Microbiota and the gut-brain axis. Nutr Rev. 73 (Suppl 1):S28–S31. 2015. View Article : Google Scholar

15 

Dinan TG and Cryan JF: Gut-brain axis in 2016: Brain-gut-microbiota axis-mood, metabolism and behaviour. Nat Rev Gastroenterol Hepatol. 14:69–70. 2017. View Article : Google Scholar : PubMed/NCBI

16 

Arumugam M, Raes J, Pelletier E, Le Paslier D, Yamada T, Mende DR, Fernandes GR, Tap J, Bruls T, Batto JM, et al: Enterotypes of the human gut microbiome. Nature. 473:174–180. 2011. View Article : Google Scholar : PubMed/NCBI

17 

Wu GD, Chen J, Hoffmann C, Bittinger K, Chen YY, Keilbaugh SA, Bewtra M, Knights D, Walters WA, Knight R, et al: Linking long-term dietary patterns with gut microbial enterotypes. Science. 334:105–108. 2011. View Article : Google Scholar : PubMed/NCBI

18 

Bushman FD, Lewis JD and Wu GD: Diet, gut enterotypes and health: Is there a link? Nestle Nutr Inst Workshop Ser. 77:65–73. 2013. View Article : Google Scholar : PubMed/NCBI

19 

Kim KA, Gu W, Lee IA, Joh EH and Kim DH: High fat diet-induced gut microbiota exacerbates inflammation and obesity in mice via the TLR4 signaling pathway. PLoS One. 7:e477132012. View Article : Google Scholar : PubMed/NCBI

20 

David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, Ling AV, Devlin AS, Varma Y, Fischbach MA, et al: Diet rapidly and reproducibly alters the human gut microbiome. Nature. 505:559–563. 2014. View Article : Google Scholar : PubMed/NCBI

21 

Schulz MD, Atay C, Heringer J, Romrig FK, Schwitalla S, Aydin B, Ziegler PK, Varga J, Reindl W, Pommerenke C, et al: High-fat-diet-mediated dysbiosis promotes intestinal carcinogenesis independently of obesity. Nature. 514:508–512. 2014. View Article : Google Scholar : PubMed/NCBI

22 

Ou JH, Ridlon JM, DeLany JP, Vipperla K, Newton K and O'Keefe SJ: Obesity and colon cancer risk: Is it the Fat? Gastroenterology. 142:S3132012. View Article : Google Scholar

23 

Gerritsen J, Smidt H, Rijkers GT and de Vos WM: Intestinal microbiota in human health and disease: The impact of probiotics. Genes Nutr. 6:209–240. 2011. View Article : Google Scholar : PubMed/NCBI

24 

Hu X, Wang T, Li W, Jin F and Wang L: Effects of NS Lactobacillus strains on lipid metabolism of rats fed a high-cholesterol diet. Lipids Health Dis. 12:672013. View Article : Google Scholar : PubMed/NCBI

25 

Liboredo JC, Anastacio LR, Peluzio Mdo C, Valente FX, Penido LC, Nicoli JR and Correia MI: Effect of probiotics on the development of dimethylhydrazine-induced preneoplastic lesions in the mice colon. Acta Cir Bras. 28:367–372. 2013. View Article : Google Scholar : PubMed/NCBI

26 

Bertkova I, Hijova E, Chmelarova A, Mojzisova G, Petrasova D, Strojny L, Bomba A and Zitnan R: The effect of probiotic microorganisms and bioactive compounds on chemically induced carcinogenesis in rats. Neoplasma. 57:422–428. 2010. View Article : Google Scholar : PubMed/NCBI

27 

Wang W, Shi LP, Shi L and Xu L: Efficacy of probiotics on the treatment of non-alcoholic fatty liver disease. Zhonghua Nei Ke Za Zhi. 57:101–106. 2018.(In Chinese). PubMed/NCBI

28 

Fan YJ, Chen SJ, Yu YC, Si JM and Liu B: A probiotic treatment containing Lactobacillus, bifidobacterium and enterococcus improves IBS symptoms in an open label trial. J Zhejiang Univ Sci B. 7:987–991. 2006. View Article : Google Scholar : PubMed/NCBI

29 

Yang Y, Xia Y, Chen H, Hong L, Feng J, Yang J, Yang Z, Shi C, Wu W, Gao R, et al: The effect of perioperative probiotics treatment for colorectal cancer: Short-term outcomes of a randomized controlled trial. Oncotarget. 7:8432–8440. 2016.PubMed/NCBI

30 

Liang S, Xu L, Zhang D and Wu Z: Effect of probiotics on small intestinal bacterial overgrowth in patients with gastric and colorectal cancer. Turk J Gastroenterol. 27:227–232. 2016. View Article : Google Scholar : PubMed/NCBI

31 

Knights D, Ward TL, McKinlay CE, Miller H, Gonzalez A, McDonald D and Knight R: Rethinking ‘enterotypes’. Cell Host Microbe. 16:433–437. 2014. View Article : Google Scholar : PubMed/NCBI

32 

Xia F, Chen J, Fung WK and Li H: A logistic normal multinomial regression model for microbiome compositional data analysis. Biometrics. 69:1053–1063. 2013. View Article : Google Scholar : PubMed/NCBI

33 

Qian L, Gao R, Hong L, Pan C, Li H, Huang J and Qin H: Association analysis of dietary habits with gut microbiota of a native Chinese community. Exp Ther Med. 16:856–866. 2018.PubMed/NCBI

34 

Wan Y, Wang F, Yuan J, Li J, Jiang D, Zhang J, Huang T, Zheng J, Mann J and Li D: Effects of macronutrient distribution on weight and related cardiometabolic profile in healthy non-obese Chinese: A 6-month, randomized controlled-feeding trial. Ebiomedicine. 22:200–207. 2017. View Article : Google Scholar : PubMed/NCBI

35 

Li W and Godzik A: Cd-hit: A fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics. 22:1658–1659. 2006. View Article : Google Scholar : PubMed/NCBI

36 

Deng W, Wang Y, Liu Z, Cheng H and Xue Y: HemI: A toolkit for illustrating heatmaps. PLoS One. 9:e1119882014. View Article : Google Scholar : PubMed/NCBI

37 

Weichselbaum E: Potential benefits of probiotics-main findings of an in-depth review. Br J Community Nurs. 15(110): 112–114. 2010.

38 

Iannitti T and Palmieri B: Therapeutical use of probiotic formulations in clinical practice. Clin Nutr. 29:701–725. 2010. View Article : Google Scholar : PubMed/NCBI

39 

Gareau MG, Sherman PM and Walker WA: Probiotics and the gut microbiota in intestinal health and disease. Nat Rev Gastroenterol Hepatol. 7:503–514. 2010. View Article : Google Scholar : PubMed/NCBI

40 

Chan YK, Brar MS, Kirjavainen PV, Chen Y, Peng J, Li D, Leung FC and El-Nezami H: High fat diet induced atherosclerosis is accompanied with low colonic bacterial diversity and altered abundances that correlates with plaque size, plasma A-FABP and cholesterol: A pilot study of high fat diet and its intervention with Lactobacillus rhamnosus GG (LGG) or telmisartan in ApoE(−/-) mice. BMC Microbiol. 16:2642016. View Article : Google Scholar : PubMed/NCBI

41 

Kato-Kataoka A, Nishida K, Takada M, Kawai M, Kikuchi-Hayakawa H, Suda K, Ishikawa H, Gondo Y, Shimizu K, Matsuki T, et al: Fermented milk containing Lactobacillus casei strain shirota preserves the diversity of the gut microbiota and relieves abdominal dysfunction in healthy medical students exposed to academic stress. Appl Environ Microbiol. 82:3649–3658. 2016. View Article : Google Scholar : PubMed/NCBI

42 

Lisko DJ, Johnston GP and Johnston CG: Effects of dietary yogurt on the healthy human gastrointestinal (GI) microbiome. Microorganisms. 5:E62017. View Article : Google Scholar : PubMed/NCBI

43 

Kristensen NB, Bryrup T, Allin KH, Nielsen T, Hansen TH and Pedersen O: Alterations in fecal microbiota composition by probiotic supplementation in healthy adults: A systematic review of randomized controlled trials. Genome Med. 8:522016. View Article : Google Scholar : PubMed/NCBI

44 

Zhang J, Wang L, Guo Z, Sun Z, Gesudu Q, Kwok L, Menghebilige and Zhang H: 454 pyrosequencing reveals changes in the faecal microbiota of adults consuming Lactobacillus casei Zhang. FEMS Microbiol Ecol. 88:612–622. 2014. View Article : Google Scholar : PubMed/NCBI

45 

Park DY, Ahn YT, Park SH, Huh CS, Yoo SR, Yu R, Sung MK, McGregor RA and Choi MS: Supplementation of Lactobacillus curvatus HY7601 and Lactobacillus plantarum KY1032 in diet-induced obese mice is associated with gut microbial changes and reduction in obesity. PLoS One. 8:e594702013. View Article : Google Scholar : PubMed/NCBI

46 

Backhed F, Fraser CM, Ringel Y, Sanders ME, Sartor RB, Sherman PM, Versalovic J, Young V and Finlay BB: Defining a healthy human gut microbiome: Current concepts, future directions, and clinical applications. Cell Host Microbe. 12:611–622. 2012. View Article : Google Scholar : PubMed/NCBI

47 

Hanifi A, Culpepper T, Mai V, Anand A, Ford AL, Ukhanova M, Christman M, Tompkins TA and Dahl WJ: Evaluation of bacillus subtilis R0179 on gastrointestinal viability and general wellness: A randomised, double-blind, placebo-controlled trial in healthy adults. Benef Microbes. 6:19–27. 2015. View Article : Google Scholar : PubMed/NCBI

48 

Hildebrandt MA, Hoffmann C, Sherrill-Mix SA, Keilbaugh SA, Hamady M, Chen YY, Knight R, Ahima RS, Bushman F and Wu GD: High-fat diet determines the composition of the murine gut microbiome independently of obesity. Gastroenterology. 137:1716–1724.e1-2. 2009. View Article : Google Scholar : PubMed/NCBI

49 

Heinsen FA, Fangmann D, Muller N, Schulte DM, Ruehlemann MC, Turk K, Settgast U, Lieb W, Baines JF, Schreiber S, et al: Beneficial effects of a dietary weight loss intervention on human gut microbiome diversity and metabolism are not sustained during weight maintenance. Obes Facts. 9:379–391. 2016. View Article : Google Scholar : PubMed/NCBI

50 

Bell DS: Changes seen in gut bacteria content and distribution with obesity: Causation or association? Postgrad Med. 127:863–868. 2015. View Article : Google Scholar : PubMed/NCBI

51 

Shang Y, Khafipour E, Derakhshani H, Sarna LK, Woo CW, Siow YL and O K: Short term high fat diet induces Obesity-Enhancing changes in mouse gut microbiota that are partially reversed by cessation of the high fat diet. Lipids. 52:499–511. 2017. View Article : Google Scholar : PubMed/NCBI

52 

Schwiertz A, Taras D, Schafer K, Beijer S, Bos NA, Donus C and Hardt PD: Microbiota and SCFA in lean and overweight healthy subjects. Obesity (Silver Spring). 18:190–195. 2010. View Article : Google Scholar : PubMed/NCBI

53 

Duncan SH, Lobley GE, Holtrop G, Ince J, Johnstone AM, Louis P and Flint HJ: Human colonic microbiota associated with diet, obesity and weight loss. Int J Obes (Lond). 32:1720–1724. 2008. View Article : Google Scholar : PubMed/NCBI

54 

Human Microbiome Project Consortium: Structure, function and diversity of the healthy human microbiome. Nature. 486:207–214. 2012. View Article : Google Scholar : PubMed/NCBI

55 

Zhang J, Guo Z, Xue Z, Sun Z, Zhang M, Wang L, Wang G, Wang F, Xu J, Cao H, et al: A phylo-functional core of gut microbiota in healthy young Chinese cohorts across lifestyles, geography and ethnicities. ISME J. 9:1979–1990. 2015. View Article : Google Scholar : PubMed/NCBI

56 

Mariat D, Firmesse O, Levenez F, Guimaraes V, Sokol H, Dore J, Corthier G and Furet JP: The Firmicutes/Bacteroidetes ratio of the human microbiota changes with age. BMC Microbiol. 9:1232009. View Article : Google Scholar : PubMed/NCBI

57 

Kang C, Wang B, Kaliannan K, Wang X, Lang H, Hui S, Huang L, Zhang Y, Zhou M, Chen M and Mi M: Gut microbiota mediates the protective effects of dietary capsaicin against chronic low-grade inflammation and associated obesity induced by high-fat diet. MBio. 8:e00470–e00417. 2017. View Article : Google Scholar : PubMed/NCBI

58 

Ferrario C, Taverniti V, Milani C, Fiore W, Laureati M, De Noni I, Stuknyte M, Chouaia B, Riso P and Guglielmetti S: Modulation of fecal clostridiales bacteria and butyrate by probiotic intervention with Lactobacillus paracasei DG varies among healthy adults. J Nutr. 144:1787–1796. 2014. View Article : Google Scholar : PubMed/NCBI

59 

Song JJ, Tian WJ, Kwok LY, Wang YL, Shang YN, Menghe B and Wang JG: Effects of microencapsulated Lactobacillus plantarum LIP-1 on the gut microbiota of hyperlipidaemic rats. Brit J Nutr. 118:481–492. 2017. View Article : Google Scholar : PubMed/NCBI

60 

Eeckhaut V, Machiels K, Perrier C, Romero C, Maes S, Flahou B, Steppe M, Haesebrouck F, Sas B, Ducatelle R, et al: Butyricicoccus pullicaecorum in inflammatory bowel disease. Gut. 62:1745–1752. 2013. View Article : Google Scholar : PubMed/NCBI

61 

Devriese S, Eeckhaut V, Geirnaert A, Van den Bossche L, Hindryckx P, Van de Wiele T, Van Immerseel F, Ducatelle R, De Vos M and Laukens D: Reduced Mucosa-associated butyricicoccus activity in patients with ulcerative colitis correlates with aberrant claudin-1 expression. J Crohns Colitis. 11:229–236. 2017. View Article : Google Scholar : PubMed/NCBI

62 

Walker AW, Ince J, Duncan SH, Webster LM, Holtrop G, Ze X, Brown D, Stares MD, Scott P, Bergerat A, et al: Dominant and diet-responsive groups of bacteria within the human colonic microbiota. ISME J. 5:220–230. 2011. View Article : Google Scholar : PubMed/NCBI

63 

An C, Kuda T, Yazaki T, Takahashi H and Kimura B: Caecal fermentation, putrefaction and microbiotas in rats fed milk casein, soy protein or fish meal. Appl Microbiol Biotechnol. 98:2779–2787. 2014. View Article : Google Scholar : PubMed/NCBI

64 

Park S, Ji Y, Jung HY, Park H, Kang J, Choi SH, Shin H, Hyun CK, Kim KT and Holzapfel WH: Lactobacillus plantarum HAC01 regulates gut microbiota and adipose tissue accumulation in a diet-induced obesity murine model. Appl Microbiol Biotechnol. 101:1605–1614. 2017. View Article : Google Scholar : PubMed/NCBI

65 

Saitoh S, Noda S, Aiba Y, Takagi A, Sakamoto M, Benno Y and Koga Y: Bacteroides ovatus as the predominant commensal intestinal microbe causing a systemic antibody response in inflammatory bowel disease. Clin Diagn Lab Immunol. 9:54–59. 2002.PubMed/NCBI

66 

Dicksved J, Halfvarson J, Rosenquist M, Jarnerot G, Tysk C, Apajalahti J, Engstrand L and Jansson JK: Molecular analysis of the gut microbiota of identical twins with Crohn's disease. ISME J. 2:716–727. 2008. View Article : Google Scholar : PubMed/NCBI

67 

El Hage R, Hernandez-Sanabria E and Van de Wiele T: Emerging trends in ‘Smart Probiotics’: Functional consideration for the development of novel health and industrial applications. Front Microbiol. 8:18892017. View Article : Google Scholar : PubMed/NCBI

68 

Winter J, Moore LH, Dowell VR Jr and Bokkenheuser VD: C-ring cleavage of flavonoids by human intestinal bacteria. Appl Environ Microbiol. 55:1203–1208. 1989.PubMed/NCBI

69 

Kasai C, Sugimoto K, Moritani I, Tanaka J, Oya Y, Inoue H, Tameda M, Shiraki K, Ito M, Takei Y and Takase K: Comparison of the gut microbiota composition between obese and non-obese individuals in a Japanese population, as analyzed by terminal restriction fragment length polymorphism and next-generation sequencing. BMC Gastroenterol. 15:1002015. View Article : Google Scholar : PubMed/NCBI

70 

Fang D, Shi D, Lv L, Gu S, Wu W, Chen Y, Chen Y, Guo J, Li A, Xinjun Hu, et al: Bifidobacterium pseudocatenulatum LI09 and Bifidobacterium catenulatum LI10 attenuate D-galactosamine-induced liver injury by modifying the gut microbiota. Sci Rep. 7:87702017. View Article : Google Scholar : PubMed/NCBI

71 

Toscano M, De Grandi R, Miniello VL, Mattina R and Drago L: Ability of Lactobacillus kefiri LKF01 (DSM32079) to colonize the intestinal environment and modify the gut microbiota composition of healthy individuals. Dig Liver Dis. 49:261–267. 2017. View Article : Google Scholar : PubMed/NCBI

72 

Jimenez MB: Treatment of irritable bowel syndrome with probiotics. An etiopathogenic approach at last? Rev Esp Enferm Dig. 101:553–564. 2009.PubMed/NCBI

73 

van den Bogert B, Meijerink M, Zoetendal EG, Wells JM and Kleerebezem M: Immunomodulatory properties of Streptococcus and Veillonella isolates from the human small intestine microbiota. PLoS One. 9:e1142772014. View Article : Google Scholar : PubMed/NCBI

74 

Garrido D, Suau A, Pochart P, Cruchet S and Gotteland M: Modulation of the fecal microbiota by the intake of a Lactobacillus johnsonii La1-containing product in human volunteers. FEMS Microbiology Letters. 248:249–256. 2005. View Article : Google Scholar : PubMed/NCBI

75 

Zhu Q, Jin Z, Wu W, Gao R, Guo B, Gao Z, Yang Y and Qin H: Analysis of the intestinal lumen microbiota in an animal model of colorectal cancer. PLoS One. 9:e908492014. View Article : Google Scholar : PubMed/NCBI

76 

Hibberd AA, Lyra A, Ouwehand AC, Rolny P, Lindegren H, Cedgard L and Wettergren Y: Intestinal microbiota is altered in patients with colon cancer and modified by probiotic intervention. BMJ Open Gastroenterol. 4:e0001452017. View Article : Google Scholar : PubMed/NCBI

77 

Wong SH, Kwong TNY, Chow TC, Luk AKC, Dai RZW, Nakatsu G, Lam TYT, Zhang L, Wu JCY, Chan FKL, et al: Quantitation of faecal Fusobacterium improves faecal immunochemical test in detecting advanced colorectal neoplasia. Gut. 66:1441–1418. 2017. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

September 2019
Volume 18 Issue 3

Print ISSN: 1792-0981
Online ISSN:1792-1015

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Qian, L., Gao, R., Huang, J., & Qin, H. (2019). Supplementation of triple viable probiotics combined with dietary intervention is associated with gut microbial improvement in humans on a high‑fat diet. Experimental and Therapeutic Medicine, 18, 2262-2270. https://doi.org/10.3892/etm.2019.7801
MLA
Qian, L., Gao, R., Huang, J., Qin, H."Supplementation of triple viable probiotics combined with dietary intervention is associated with gut microbial improvement in humans on a high‑fat diet". Experimental and Therapeutic Medicine 18.3 (2019): 2262-2270.
Chicago
Qian, L., Gao, R., Huang, J., Qin, H."Supplementation of triple viable probiotics combined with dietary intervention is associated with gut microbial improvement in humans on a high‑fat diet". Experimental and Therapeutic Medicine 18, no. 3 (2019): 2262-2270. https://doi.org/10.3892/etm.2019.7801