Long non‑coding RNA NEAT1 modulates hypoxia/reoxygenation‑induced cardiomyocyte injury via targeting microRNA‑520a

  • Authors:
    • Hua‑Jun Wu
    • Guan‑Min Tang
    • Ping‑Yang Shao
    • Hong‑Xing Zou
    • Wei‑Feng Shen
    • Ming‑De Huang
    • Hang‑Hai Pan
    • Chang‑Lin Zhai
    • Gang Qian
  • View Affiliations

  • Published online on: July 17, 2019     https://doi.org/10.3892/etm.2019.7788
  • Pages: 2199-2206
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

In the present study, a hypoxia/reoxygenation (H/R) model of cardiomyocytes was established to investigate the effects of long non‑coding RNA (LncRNA) Nuclear Enriched Abundant Transcript 1 (NEAT1) and microRNA (miR)‑520a on H/R‑induced cardiomyocyte apoptosis. Flow cytometry and terminal deoxynucleotidyl transferase dUTP nick end labeling staining were used to evaluate cell apoptosis. Luciferase activity assay was used to investigate whether miR‑520a targets NEAT1. Results revealed that NEAT1 was significantly upregulated and miR‑520a was downregulated in the ischemia/reperfusion myocardium and the cardiomyocytes that received H/R treatment. Further study demonstrated that knockdown of NEAT1 and overexpression of miR‑520a serves a protective role against H/R‑induced cardiomyocyte apoptosis. miR‑520a directly targets NEAT1 and its expression level is negatively correlated with that of NEAT1. The findings suggested that NEAT1 and miR‑520a may protect cardiomyocytes from apoptosis through regulating apoptotic proteins B‑cell lymphoma 2 (Bcl‑2) and Bcl‑2‑associated X protein, and altering cleaved caspase3 expression levels.

References

1 

Wang KC and Chang HY: Molecular mechanisms of long noncoding RNAs. Mol Cell. 43:904–914. 2011. View Article : Google Scholar : PubMed/NCBI

2 

Li J, Kim K, Jeong SY, Chiu J, Xiong B, Petukhov PA, Dai X, Li X, Andrews RK, Du X, et al: Platelet protein disulfide isomerase promotes glycoprotein ibα -mediated platelet-neutrophil interactions under thromboinflammatory conditions. Circulation. 139:1300–1319. 2019. View Article : Google Scholar : PubMed/NCBI

3 

Rahnavard M, Hassanpour M, Ahmadi M, Heidarzadeh M, Amini H, Javanmard MZ, Nouri M, Rahbarghazi R and Safaie N: Curcumin ameliorated myocardial infarction by inhibition of cardiotoxicity in the rat model. J Cell Biochem. 18–Feb;2019.(Epub ahead of print). View Article : Google Scholar : PubMed/NCBI

4 

Karreth FA, Reschke M, Ruocco A, Ng C, Chapuy B, Léopold V, Sjoberg M, Keane TM, Verma A, Ala U, et al: The BRAF pseudogene functions as a competitive endogenous RNA and induces lymphoma in vivo. Cell. 161:319–332. 2015. View Article : Google Scholar : PubMed/NCBI

5 

Cremer S, Michalik KM, Fischer A, Pfisterer L, Jaé N, Winter C, Boon RA, Muhly-Reinholz M, John D, Uchida S, et al: Hematopoietic deficiency of the long non-coding RNA MALAT1 promotes atherosclerosis and plaque inflammation. Circulation. 139:1320–1334. 2019. View Article : Google Scholar : PubMed/NCBI

6 

Shen L, Wang Q, Liu R, Chen Z, Zhang X, Zhou P and Wang Z: LncRNA lnc-RI regulates homologous recombination repair of DNA double-strand breaks by stabilizing RAD51 mRNA as a competitive endogenous RNA. Nucleic Acids Res. 46:717–729. 2018. View Article : Google Scholar : PubMed/NCBI

7 

Lin Y, Schmidt BF, Bruchez MP and McManus CJ: Structural analyses of NEAT1 lncRNAs suggest long-range RNA interactions that may contribute to paraspeckle architecture. Nucleic Acids Res. 46:3742–3752. 2018. View Article : Google Scholar : PubMed/NCBI

8 

Yu L, Sun Y, Cheng L, Jin Z, Yang Y, Zhai M, Pei H, Wang X, Zhang H, Meng Q, et al: Melatonin receptor-mediated protection against myocardial ischemia/reperfusion injury: Role of SIRT1. J Pineal Res. 2:228–238. 2014. View Article : Google Scholar

9 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2 (-Delta Delta C (T)) method. Methods. 25:402–408. 2001. View Article : Google Scholar : PubMed/NCBI

10 

Csaba G and Madarasz B: Ultrastructural changes elicited in the Tetrahymena by primary exposure (imprinting) and reexposure to hormone. Z MikroskAnatForsch. 99:884–890. 1985.

11 

Heusch G and Gersh BJ: The pathophysiology of acute myocardial infarction and strategies of protection beyond reperfusion: A continual challenge. Eur Heart J. 38:774–784. 2017.PubMed/NCBI

12 

Nawaz W, Khan FU, Khan MZ, Gang W, Yang M, Liao X, Zhang L, Ihsan AU, Khan A, Han L and Zhou X: Exo-organoplasty interventions: A brief review of past, present and future directions for advance heart failure management. Biomed Pharmacother. 88:162–172. 2017. View Article : Google Scholar : PubMed/NCBI

13 

White HD and Chew DP: Acute myocardial infarction. Lancet. 372:570–584. 2008. View Article : Google Scholar : PubMed/NCBI

14 

Shi B, Ma M, Zheng Y, Pan Y and Lin X: mTOR and Beclin1: Two key autophagy-related molecules and their roles in myocardial ischemia/reperfusion injury. J Cell Physiol. 234:12562–12568. 2019. View Article : Google Scholar : PubMed/NCBI

15 

Zhong CB, Chen X, Zhou XY and Wang XB: The role of peroxisome proliferator-activated receptor γ in mediating cardioprotection against ischemia/reperfusion injury. J Cardiovasc Pharmacol Ther. 23:46–56. 2018. View Article : Google Scholar : PubMed/NCBI

16 

DeBerge M, Yeap XY, Dehn S, Zhang S, Grigoryeva L, Misener S, Procissi D, Zhou X, Lee DC, Muller WA, et al: MerTK cleavage on resident cardiac macrophages compromises repair after myocardial ischemia reperfusion injury. Circ Res. 121:930–940. 2017. View Article : Google Scholar : PubMed/NCBI

17 

Klattenhoff CA, Scheuermann J, C Surface LE, Bradley RK, Fields PA, Steinhauser ML, Ding H, Butty VL, Torrey L, Haas S, et al: Braveheart, a long noncoding RNA required for cardiovascular lineage commitment. Cell. 152:570–583. 2013. View Article : Google Scholar : PubMed/NCBI

18 

Guttman M, Donaghey J, Carey BW, Garber M, Grenier JK, Munson G, Young G, Lucas AB, Ach R, Bruhn L, et al: lincRNAs act in the circuitry controlling pluripotency and differentiation. Nature. 477:295–300. 2011. View Article : Google Scholar : PubMed/NCBI

19 

Yildirim E, Kirby JE, Brown DE, Mercier FE, Sadreyev RI, Scadden DT and Lee JT: Xist RNA is a potent suppressor of hematologic cancer in mice. Cell. 152:727–742. 2013. View Article : Google Scholar : PubMed/NCBI

20 

Gartler SM and Riggs AD: Mammalian X-chromosome inactivation. Annu Rev Genet. 17:155–190. 1983. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

September 2019
Volume 18 Issue 3

Print ISSN: 1792-0981
Online ISSN:1792-1015

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Wu, H., Tang, G., Shao, P., Zou, H., Shen, W., Huang, M. ... Qian, G. (2019). Long non‑coding RNA NEAT1 modulates hypoxia/reoxygenation‑induced cardiomyocyte injury via targeting microRNA‑520a. Experimental and Therapeutic Medicine, 18, 2199-2206. https://doi.org/10.3892/etm.2019.7788
MLA
Wu, H., Tang, G., Shao, P., Zou, H., Shen, W., Huang, M., Pan, H., Zhai, C., Qian, G."Long non‑coding RNA NEAT1 modulates hypoxia/reoxygenation‑induced cardiomyocyte injury via targeting microRNA‑520a". Experimental and Therapeutic Medicine 18.3 (2019): 2199-2206.
Chicago
Wu, H., Tang, G., Shao, P., Zou, H., Shen, W., Huang, M., Pan, H., Zhai, C., Qian, G."Long non‑coding RNA NEAT1 modulates hypoxia/reoxygenation‑induced cardiomyocyte injury via targeting microRNA‑520a". Experimental and Therapeutic Medicine 18, no. 3 (2019): 2199-2206. https://doi.org/10.3892/etm.2019.7788