Open Access

Oral administration of Urtica macrorrhiza Hand.‑Mazz. polysaccharides to protect against cyclophosphamide‑induced intestinal immunosuppression

  • Authors:
    • Zhongjuan Wang
    • Yanhua Li
    • Chongjing Wang
    • Hongying Xia
    • Yueqin Liang
    • Zhongkun Li
  • View Affiliations

  • Published online on: July 18, 2019     https://doi.org/10.3892/etm.2019.7792
  • Pages: 2178-2186
  • Copyright: © Wang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

As a strategy to prevent the well‑known immunosuppressant effects of cyclophosphamide (CY), the immunomodulatory activity of the polysaccharide isolated from Urtica macrorrhiza Hand.‑Mazz. (UMHMPS) was investigated in the present study. The chemical properties of UMHMPS, including total carbohydrates, uronic acid, protein contents, monosaccharide compositions, molecular weight and structural confirmation, were investigated. The immunomodulatory activity of UMHMPS was evaluated using a CY‑induced immunosuppression mouse model. The results revealed that UMHMPS, which is composed of rhamnose, gluconic acid, galactose acid, galactose and xylose, exhibited potent immunomodulatory activity and low toxicity in mice. It increased the secretions of secretory immunoglobulin A, interferon (IFN)‑γ and interleukin (IL)‑4, and maintained the balance of the ratios of IFN‑γ/IL‑4 and cluster of differentiation (CD)3+/CD19+ cells in Peyer's patches. Furthermore, it increased the expression of Toll‑like receptor (TLR)‑4, indicating that TLR4 may be one of the receptors of UMHMPS. Therefore, the present study provides evidence for the potential use of UMHMPS as an immune enhancement drug in chemotherapy.

References

1 

Eichhorst ST, Muerkoster S, Weigand MA and Krammer PH: The chemotherapeutic drug 5-fluorouracil induces apoptosis in mouse thymocytes in vivo via activation of the CD95(APO-1/Fas) system. Cancer Res. 61:243–248. 2001.PubMed/NCBI

2 

Bagchi D, Bagchi M, Stohs SJ, Das DK, Ray SD, Kuszynski CA, Joshi SS and Pruess HG: Free radicals and grape seed proanthocyanidin extract: Importance in human health and disease prevention. Toxicology. 148:187–197. 2000. View Article : Google Scholar : PubMed/NCBI

3 

Manente FA, Quinello C, Ferreira LS, de Andrade CR, Jellmayer JA, Portuondo DL, Batista-Duharte A and Carlos IZ: Experimental sporotrichosis in a cyclophosphamide-induced immunosuppressed mice model. Med Mycol. 56:711–722. 2018. View Article : Google Scholar : PubMed/NCBI

4 

Yin J, Zhou Q, Wang L, Xu W and Zhang J: Protective effect of extract of Mauremys mutica against cyclophosphamide (CY)-induced suppression of immune function in mice. Food Agr Immunol. 27:577–588. 2016. View Article : Google Scholar

5 

Deng J, Zhong YF, Wu YP, Luo Z, Sun YM, Wang GE, Kurihara H, Li YF and He RR: Carnosine attenuates cyclophosphamide-induced bone marrow suppression by reducing oxidative DNA damage. Redox Biol. 14:1–6. 2018. View Article : Google Scholar : PubMed/NCBI

6 

Martello MD, David N, Matuo R, Carvalho PC, Navarro SD, Monreal AC, Cunha-Laura AL, Cardoso CA, Kassuya CA and Oliveira RJ: Campomanesia adamantium extract induces DNA damage, apoptosis, and affects cyclophosphamide metabolism. Genet Mol Res. 152016.doi: 10.4238/gmr.15027678.

7 

Sun C, Yang J, Pan L, Guo N, Li B, Yao J, Wang M, Qi C, Zhang G and Liu Z: Improvement of icaritin on hematopoietic function in cyclophosphamide-induced myelosuppression mice. Immunopharmacol Immunotoxicol. 40:25–34. 2018. View Article : Google Scholar : PubMed/NCBI

8 

Zhou Y, Chen X, Yi R, Li G, Sun P, Qian Y and Zhao X: Immunomodulatory effect of Tremella polysaccharides against cyclophosphamide-induced immunosuppression in mice. Molecules. 23(pii): E2392018. View Article : Google Scholar : PubMed/NCBI

9 

Mowat AM and Agace WW: Regional specialization within the intestinal immune system. Nat Rev Immunol. 14:667–685. 2014. View Article : Google Scholar : PubMed/NCBI

10 

Duerkop BA, Vaishnava S and Hooper LV: Immune responses to the microbiota at the intestinal mucosal surface. Immunity. 31:368–376. 2009. View Article : Google Scholar : PubMed/NCBI

11 

Zheng R, Li X, Cao B, Zuo T, Wu J, Wang J, Xue C and Tang Q: Dietary Apostichopus japonicus enhances the respiratory and intestinal mucosal immunity in immunosuppressive mice. Biosci Biotechnol Biochem. 79:253–259. 2015. View Article : Google Scholar : PubMed/NCBI

12 

Adhikari BM, Bajracharya A and Shrestha AK: Comparison of nutritional properties of stinging nettle (Urtica dioica) flour with wheat and barley flours. Food Sci Nutr. 4:119–124. 2015. View Article : Google Scholar : PubMed/NCBI

13 

Bakhshaee M, Mohammad Pour AH, Esmaeili M, Jabbari Azad F, Alipour Talesh G, Salehi M and Noorollahian Mohajer M: Efficacy of supportive therapy of allergic rhinitis by stinging Nettle (Urtica dioica) root extract: A randomized, double-blind, placebo-controlled, clinical trial. Iran J Pharm Res. 16 (Suppl):S112–S118. 2017.

14 

El Haouari M, Bnouham M, Bendahou M, Aziz M, Ziyyat A, Legssyer A and Mekhfi H: Inhibition of rat platelet aggregation by Urtica dioica leaves extracts. Phytother Res. 20:568–572. 2006. View Article : Google Scholar : PubMed/NCBI

15 

Kianbakht S, Khalighi-Sigaroodi F and Dabaghian FH: Improved glycemic control in patients with advanced type 2 diabetes mellitus taking Urtica dioica leaf extract: A randomized double-blind placebo-controlled clinical trial. Clin Lab. 59:1071–1076. 2013. View Article : Google Scholar : PubMed/NCBI

16 

Safarinejd MR: Urtica dioica for treatment of benign prostatic hyperplasia: A prospective, randomized, double-blind, placebo-controlled, crossover study. J Herb Pharmacother. 5:1–11. 2005. View Article : Google Scholar

17 

Marrassini C, Davicino R, Acevedo C, Anesini C, Gorzalczany S and Ferraro G: Vicenin-2, a potential anti-inflammatory constituent of Urtica circularis. J Nat Prod. 74:1503–1507. 2011. View Article : Google Scholar : PubMed/NCBI

18 

Jiang MH, Zhu L and Jiang JG: Immunoregulatory actions of polysaccharides from Chinese herbal medicine. Expert Opin Ther Targets. 14:1367–1402. 2010. View Article : Google Scholar : PubMed/NCBI

19 

Saha SK and Brewer CF: Determination of the concentrations of oligosaccharides, complex type carbohydrates, and glycoproteins using the phenol-sulfuric acid method. Carbohydr Res. 254:157–167. 1994. View Article : Google Scholar : PubMed/NCBI

20 

Murado MA, Vazquez JA, Montemayor MI, Cabo ML and del Pilar González M: Two mathematical models for the correction of carbohydrate and protein interference in the determination of uronic acids by the m-hydroxydiphenyl method. Biotechnol Appl Biochem. 41:209–216. 2005. View Article : Google Scholar : PubMed/NCBI

21 

Bradford MM: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 72:248–254. 1976. View Article : Google Scholar : PubMed/NCBI

22 

Han L, Suo Y, Yang Y, Meng J and Hu N: Optimization, characterization, and biological activity of polysaccharides from Berberis dasystachya Maxim. Int J Biol Macromol. 85:655–666. 2016. View Article : Google Scholar : PubMed/NCBI

23 

Wang Y, Liu X, Zhang J, Liu G, Liu Y, Wang K, Yang M, Cheng H and Zhao Z: Structural characterization and in vitro antitumor activity of polysaccharides from Zizyphus jujuba cv. Muzao. Rsc Adv. 5:7860–7867. 2015. View Article : Google Scholar

24 

Liu N, Dong Z, Zhu X, Xu H and Zhao Z: Characterization and protective effect of Polygonatum sibiricum polysaccharide against cyclophosphamide-induced immunosuppression in Balb/c mice. Int J Biol Macromol. 107:796–802. 2018. View Article : Google Scholar : PubMed/NCBI

25 

Chai Y and Zhao M: Purification, characterization and anti-proliferation activities of polysaccharides extracted from Viscum coloratum (Kom.) Nakai. Carbohydr Polym. 149:121–130. 2016. View Article : Google Scholar : PubMed/NCBI

26 

Akbay P, Basaran AA, Undeger U and Basaran N: In vitro immunomodulatory activity of flavonoid glycosides from Urtica dioica L. Phytother Res. 17:34–37. 2003. View Article : Google Scholar : PubMed/NCBI

27 

Kuhn KA and Stappenbeck TS: Peripheral education of the immune system by the colonic microbiota. Semin Immunol. 25:364–369. 2013. View Article : Google Scholar : PubMed/NCBI

28 

Fan Y, Lu Y, Wang D, Liu J, Song X, Zhang W, Zhao X, Nguyen TL and Hu Y: Effect of epimedium polysaccharide-propolis flavone immunopotentiator on immunosuppression induced by cyclophosphamide in chickens. Cell Immunol. 281:37–43. 2013. View Article : Google Scholar : PubMed/NCBI

29 

Yu J, Cong L, Wang C, Li H, Zhang C, Guan X, Liu P, Xie Y, Chen J and Sun J: Immunomodulatory effect of Schisandra polysaccharides in cyclophosphamide-induced immunocompromised mice. Exp Ther Med. 15:4755–4762. 2018.PubMed/NCBI

30 

Gong Y, Wu J and Li ST: Immuno-enhancement effects of Lycium ruthenicum Murr. polysaccharide on cyclophosphamide-induced immunosuppression in mice. Int J Clin Exp Med. 8:20631–20637. 2015.PubMed/NCBI

31 

Chen X, Nie W, Fan S, Zhang J, Wang Y, Lu J and Jin L: A polysaccharide from Sargassum fusiforme protects against immunosuppression in cyclophosphamide-treated mice. Carbohydr Polym. 90:1114–1119. 2012. View Article : Google Scholar : PubMed/NCBI

32 

Suh HJ, Yang HS, Ra KS, Noh DO, Kwon KH, Hwang JH and Yu KW: Peyer's patch-mediated intestinal immune system modulating activity of pectic-type polysaccharide from peel of Citrus unshiu. Food Chem. 138:1079–1086. 2013. View Article : Google Scholar : PubMed/NCBI

33 

Kim D, Lee J, Kim KJ, Hong HC, Shin KS and Yu KW: Macrophage stimulating polysaccharide purified from peels of grape (Vitis labrusca). Food Sci Biotechnol. 19:479–486. 2010. View Article : Google Scholar

34 

Maynard CL, Elson CO, Hatton RD and Weaver CT: Reciprocal interactions of the intestinal microbiota and immune system. Nature. 489:231–241. 2012. View Article : Google Scholar : PubMed/NCBI

35 

Hall JA, Bouladoux N, Sun CM, Wohlfert EA, Blank RB, Zhu Q, Grigg ME, Berzofsky JA and Belkaid Y: Commensal DNA limits regulatory T cell conversion and is a natural adjuvant of intestinal immune responses. Immunity. 29:637–649. 2008. View Article : Google Scholar : PubMed/NCBI

36 

Maggi E: The TH1/TH2 paradigm in allergy. Immunotechnology. 3:233–244. 1998. View Article : Google Scholar : PubMed/NCBI

37 

Round JL and Mazmanian SK: The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immunol. 9:313–323. 2009. View Article : Google Scholar : PubMed/NCBI

38 

Matar P, Rozados VR, Gervasoni SI and Scharovsky GO: Th2/Th1 switch induced by a single low dose of cyclophosphamide in a rat metastatic lymphoma model. Cancer Immunol Immunother. 50:588–596. 2002. View Article : Google Scholar : PubMed/NCBI

39 

Da Silva C, Wagner C, Bonnardel J, Gorvel JP and Lelouard H: The Peyer's patch mononuclear phagocyte system at steady state and during infection. Front Immunol. 8:12542017. View Article : Google Scholar : PubMed/NCBI

40 

Figueiredo RT, Bittencourt VC, Lopes LC, Sassaki G and Barreto-Bergter E: Toll-like receptors (TLR2 and TLR4) recognize polysaccharides of Pseudallescheria boydii cell wall. Carbohydr Res. 356:260–264. 2012. View Article : Google Scholar : PubMed/NCBI

41 

Lin KI, Kao YY, Kuo HK, Yang WB, Chou A, Lin HH, Yu AL and Wong CH: Reishi polysaccharides induce immunoglobulin production through the TLR4/TLR2-mediated induction of transcription factor Blimp-1. J Biol Chem. 281:24111–24123. 2006. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

September 2019
Volume 18 Issue 3

Print ISSN: 1792-0981
Online ISSN:1792-1015

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Wang, Z., Li, Y., Wang, C., Xia, H., Liang, Y., & Li, Z. (2019). Oral administration of Urtica macrorrhiza Hand.‑Mazz. polysaccharides to protect against cyclophosphamide‑induced intestinal immunosuppression. Experimental and Therapeutic Medicine, 18, 2178-2186. https://doi.org/10.3892/etm.2019.7792
MLA
Wang, Z., Li, Y., Wang, C., Xia, H., Liang, Y., Li, Z."Oral administration of Urtica macrorrhiza Hand.‑Mazz. polysaccharides to protect against cyclophosphamide‑induced intestinal immunosuppression". Experimental and Therapeutic Medicine 18.3 (2019): 2178-2186.
Chicago
Wang, Z., Li, Y., Wang, C., Xia, H., Liang, Y., Li, Z."Oral administration of Urtica macrorrhiza Hand.‑Mazz. polysaccharides to protect against cyclophosphamide‑induced intestinal immunosuppression". Experimental and Therapeutic Medicine 18, no. 3 (2019): 2178-2186. https://doi.org/10.3892/etm.2019.7792