Open Access

Characterization and identification of human immortalized granulosa cells derived from ovarian follicular fluid

  • Authors:
    • Ai Ai
    • Zhengya Tang
    • Yali Liu
    • Sha Yu
    • Bin Li
    • He Huang
    • Xiangsheng Wang
    • Yilin Cao
    • Wenjie Zhang
  • View Affiliations

  • Published online on: July 23, 2019     https://doi.org/10.3892/etm.2019.7802
  • Pages: 2167-2177
  • Copyright: © Ai et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Follicular fluid serves a crucial role in follicular development and oocyte maturation. Increasing evidence indicates that follicular fluid is rich in proteins and functional cells. In addition to oocyte cells, follicular fluid contains granulosa, thecal and ovarian surface epithelial cells. Granulosa cells (GCs) represent the predominant somatic cell type of the ovarian follicle and are involved in steroidogenesis and folliculogenesis. However, the long‑term culture of GCs in vitro remains challenging. The present study aimed to extend the culture of GCs in vitro. Human GCs were collected from the follicular fluid of patients included in an in vitro fertilization program and cultured in the presence of conditioned medium obtained from mouse embryonic fibroblasts. GCs were cultured for over a year and 130 passages, and the population doubling time was ~22 h. Cells presented epithelial‑like morphology and a cobblestone‑like appearance when they reached confluence. Flow cytometric analysis demonstrated that cells expressed CD29, CD166 and CD49f but not CD31, CD34, CD45, CD90, CD105 or CD13. Immunofluorescence staining revealed that cells expressed follicle stimulating hormone receptor, luteinizing hormone receptor and cytochrome P450 aromatase, which was confirmed by reverse transcription‑quantitative polymerase chain reaction. In the presence of androstenedione, cells secreted estradiol. In addition, estradiol level was further stimulated by dibutyryl cAMP treatment. In addition, intracellular cAMP and progesterone expression levels were upregulated by follicle stimulating hormone and/or human chorionic gonadotropin. Furthermore, cells survived in severe combined immunodeficiency mice following intra‑ovarian injection. Histological analysis revealed that certain cells formed follicle‑like structures. The results from the present study suggested that immortalized GCs may be a useful tool for further research on GC and improve the clinical application of drugs such as follicle‑stimulating hormone or human chorionic gonadotropin.

References

1 

Senbon S, Hirao Y and Miyano T: Interactions between the oocyte and surrounding somatic cells in follicular development: Lessons from in vitro culture. J Reprod Dev. 49:259–269. 2003. View Article : Google Scholar : PubMed/NCBI

2 

Dzafic E, Stimpfel M and Virant-Klun I: Plasticity of granulosa cells: On the crossroad of stemness and transdifferentiation potential. J Assist Reprod Genet. 30:1255–1261. 2013. View Article : Google Scholar : PubMed/NCBI

3 

Kossowska-Tomaszczuk K, De Geyter C, De Geyter M, Martin I, Holzgreve W, Scherberich A and Zhang H: The multipotency of luteinizing granulosa cells collected from mature ovarian follicles. Stem Cells. 27:210–219. 2009. View Article : Google Scholar : PubMed/NCBI

4 

Gougeon A: Regulation of ovarian follicular development in primates: Facts and hypotheses. Endocr Rev. 17:121–155. 1996. View Article : Google Scholar : PubMed/NCBI

5 

Niswender GD, Juengel JL, Silva PJ, Rollyson MK and McIntush EW: Mechanisms controlling the function and the life span of the corpus luteum. Physiol Rev. 80:1–29. 2000. View Article : Google Scholar : PubMed/NCBI

6 

Lavranos TC, Rodgers HF, Bertoncello I and Rodgers RJ: Anchorage-independent culture of bovine granulosa cells: The effects of basic fibroblast growth factor and dibutyryl cAMP on cell division and differentiation. Exp Cell Res. 211:245–251. 1994. View Article : Google Scholar : PubMed/NCBI

7 

Van Deerlin PG, Cekleniak N, Coutifaris C, Boyd J and Strauss JF 3rd: Evidence for the oligoclonal origin of the granulosa cell population of the mature human follicle. J Clin Endocrinol Metab. 82:3019–3024. 1997. View Article : Google Scholar : PubMed/NCBI

8 

Lavranos TC, Mathis JM, Latham SE, Kalionis B, Shay JW and Rodgers RJ: Evidence for ovarian granulosa stem cells: Telomerase activity and localization of the telomerase ribonucleic acid component in bovine ovarian follicles. Biol Reprod. 61:358–366. 1999. View Article : Google Scholar : PubMed/NCBI

9 

Bukovsky A, Caudle MR and Svetlikova M: Steroid-mediated differentiation of neural/neuronal cells from epithelial ovarian precursors in vitro. Cell Cycle. 7:3577–3583. 2008. View Article : Google Scholar : PubMed/NCBI

10 

Bukovsky A, Gupta SK, Virant-Klun I, Upadhyaya NB, Copas P, Van Meter SE, Svetlikova M, Ayala ME and Dominguez R: Study origin of germ cells and formation of new primary follicles in adult human and rat ovaries. Methods Mol Biol. 450:233–265. 2008. View Article : Google Scholar : PubMed/NCBI

11 

Virant-Klun I, Zech N, Rozman P, Vogler A, Cvjeticanin B, Klemenc P, Malicev E and Meden-Vrtovec H: Putative stem cells with an embryonic character isolated from the ovarian surface epithelium of women with no naturally present follicles and oocytes. Differentiation. 76:843–856. 2008. View Article : Google Scholar : PubMed/NCBI

12 

Varras M, Griva T, Kalles V, Akrivis C and Paparisteidis N: Markers of stem cells in human ovarian granulosa cells: Is there a clinical significance in ART? J Ovarian Res. 5:362012. View Article : Google Scholar : PubMed/NCBI

13 

Kossowska-Tomaszczuk K and De Geyter C: Cells with stem cell characteristics in somatic compartments of the ovary. Biomed Res Int. 2013:3108592013. View Article : Google Scholar : PubMed/NCBI

14 

Kossowska-Tomaszczuk K, Pelczar P, Güven S, Kowalski J, Volpi E, De Geyter C and Scherberich A: A novel three-dimensional culture system allows prolonged culture of functional human granulosa cells and mimics the ovarian environment. Tissue Eng Part A. 16:2063–2073. 2010. View Article : Google Scholar : PubMed/NCBI

15 

Bruckova L, Soukup T, Visek B, Moos J, Moosova M, Pavelkova J, Rezabek K, Kucerova L, Micuda S, Brcakova E and Mokry J: Proliferative potential and phenotypic analysis of long-term cultivated human granulosa cells initiated by addition of follicular fluid. J Assist Reprod Genet. 28:939–950. 2011. View Article : Google Scholar : PubMed/NCBI

16 

Evans MJ and Kaufman MH: Establishment in culture of pluripotential cells from mouse embryos. Nature. 292:154–156. 1981. View Article : Google Scholar : PubMed/NCBI

17 

Lim JW and Bodnar A: Proteome analysis of conditioned medium from mouse embryonic fibroblast feeder layers which support the growth of human embryonic stem cells. Proteomics. 2:1187–1203. 2002. View Article : Google Scholar : PubMed/NCBI

18 

Shi YT, Huang YZ, Tang F and Chu JX: Mouse embryonic stem cell-derived feeder cells support the growth of their own mouse embryonic stem cells. Cell Biol Int. 30:1041–1047. 2006. View Article : Google Scholar : PubMed/NCBI

19 

Kuang Y, Chen Q, Fu Y, Wang Y, Hong Q, Lyu Q, Ai A and Shoham Z: Medroxyprogesterone acetate is an effective oral alternative for preventing premature luteinizing hormone surges in women undergoing controlled ovarian hyperstimulation for in vitro fertilization. Fertil Steril. 104:62–70 e63. 2015. View Article : Google Scholar : PubMed/NCBI

20 

Zhang L, He A, Yin Z, Yu Z, Luo X, Liu W, Zhang W, Cao Y, Liu Y and Zhou G: Regeneration of human-ear-shaped cartilage by co-culturing human microtia chondrocytes with BMSCs. Biomaterials. 35:4878–4887. 2014. View Article : Google Scholar : PubMed/NCBI

21 

Chen Y, Ai A, Tang ZY, Zhou GD, Liu W, Cao Y and Zhang WJ: Mesenchymal-like stem cells derived from human parthenogenetic embryonic stem cells. Stem Cells Dev. 21:143–151. 2012. View Article : Google Scholar : PubMed/NCBI

22 

Baroffio A, Dupin E and Le Douarin NM: Clone-forming ability and differentiation potential of migratory neural crest cells. Proc Natl Acad Sci USA. 85:5325–5329. 1988. View Article : Google Scholar : PubMed/NCBI

23 

Gan Y, Dai K, Zhang P, Tang T, Zhu Z and Lu J: The clinical use of enriched bone marrow stem cells combined with porous beta-tricalcium phosphate in posterior spinal fusion. Biomaterials. 29:3973–3982. 2008. View Article : Google Scholar : PubMed/NCBI

24 

Xu C, Inokuma MS, Denham J, Golds K, Kundu P, Gold JD and Carpenter MK: Feeder-free growth of undifferentiated human embryonic stem cells. Nat Biotechnol. 19:971–974. 2001. View Article : Google Scholar : PubMed/NCBI

25 

Liu L, Peng Z, Xu Z, Huang H and Wei X: Mouse embryonic fibroblast (MEF)/BMP4-conditioned medium enhanced multipotency of human dental pulp cells. J Mol Histol. 49:17–26. 2018. View Article : Google Scholar : PubMed/NCBI

26 

Ferrero H, Delgado-Rosas F, Garcia-Pascual CM, Monterde M, Zimmermann RC, Simón C, Pellicer A and Gómez R: Efficiency and purity provided by the existing methods for the isolation of luteinized granulosa cells: A comparative study. Hum Reprod. 27:1781–1789. 2012. View Article : Google Scholar : PubMed/NCBI

27 

Beckmann MW, Polacek D, Seung L and Schreiber JR: Human ovarian granulosa cell culture: Determination of blood cell contamination and evaluation of possible culture purification steps. Fertil Steril. 56:881–887. 1991. View Article : Google Scholar : PubMed/NCBI

28 

Thorsby E: A short history of HLA. Tissue Antigens. 74:101–116. 2009. View Article : Google Scholar : PubMed/NCBI

29 

Dzafic E, Stimpfel M, Novakovic S, Cerkovnik P and Virant-Klun I: Expression of mesenchymal stem cells-related genes and plasticity of aspirated follicular cells obtained from infertile women. Biomed Res Int. 2014:5082162014. View Article : Google Scholar : PubMed/NCBI

30 

Rice S, Elia A, Jawad Z, Pellatt L and Mason HD: Metformin inhibits follicle-stimulating hormone (FSH) action in human granulosa cells: Relevance to polycystic ovary syndrome. J Clin Endocrinol Metab. 98:E1491–E1500. 2013. View Article : Google Scholar : PubMed/NCBI

31 

James K, Bhartiya D, Ganguly R, Kaushik A, Gala K, Singh P and Metkari SM: Gonadotropin and steroid hormones regulate pluripotent very small embryonic-like stem cells in adult mouse uterine endometrium. J Ovarian Res. 11:832018. View Article : Google Scholar : PubMed/NCBI

32 

Kumar TR: Extragonadal FSH receptor: Is it real? Biol Reprod. 91:992014. View Article : Google Scholar : PubMed/NCBI

33 

Kumar TR: Extragonadal actions of FSH: A critical need for novel genetic models. Endocrinology. 159:2–8. 2018. View Article : Google Scholar : PubMed/NCBI

34 

Allan CM, Kalak R, Dunstan CR, McTavish KJ, Zhou H, Handelsman DJ and Seibel MJ: Follicle-stimulating hormone increases bone mass in female mice. Proc Natl Acad Sci USA. 107:22629–22634. 2010. View Article : Google Scholar : PubMed/NCBI

35 

Stelmaszewska J, Chrusciel M, Doroszko M, Akerfelt M, Ponikwicka-Tyszko D, Nees M, Frentsch M, Li X, Kero J, Huhtaniemi I, et al: Revisiting the expression and function of follicle-stimulation hormone receptor in human umbilical vein endothelial cells. Sci Rep. 6:370952016. View Article : Google Scholar : PubMed/NCBI

36 

Davis MR and Summers KM: Structure and function of the mammalian fibrillin gene family: Implications for human connective tissue diseases. Mol Genet Metab. 107:635–647. 2012. View Article : Google Scholar : PubMed/NCBI

37 

Méduri G, Charnaux N, Driancourt MA, Combettes L, Granet P, Vannier B, Loosfelt H and Milgrom E: Follicle-stimulating hormone receptors in oocytes. J Clin Endocrinol Metab. 87:2266–2276. 2002. View Article : Google Scholar : PubMed/NCBI

38 

Havelock JC, Rainey WE and Carr BR: Ovarian granulosa cell lines. Mol Cell Endocrinol. 228:67–78. 2004. View Article : Google Scholar : PubMed/NCBI

39 

Rainey WH, Sawetawan C, Shay JW, Michael MD, Mathis JM, Kutteh W, Byrd W and Carr BR: Transformation of human granulosa cells with the E6 and E7 regions of human papillomavirus. J Clin Endocrinol Metab. 78:705–710. 1994. View Article : Google Scholar : PubMed/NCBI

40 

Tsutsumi R, Hiroi H, Momoeda M, Hosokawa Y, Nakazawa F, Koizumi M, Yano T, Tsutsumi O and Taketani Y: Inhibitory effects of cholesterol sulfate on progesterone production in human granulosa-like tumor cell line, KGN. Endocr J. 55:575–581. 2008. View Article : Google Scholar : PubMed/NCBI

41 

Bayasula, Iwase A, Kiyono T, Takikawa S, Goto M, Nakamura T, Nagatomo Y, Nakahara T, Kotani T, Kobayashi H, et al: Establishment of a human nonluteinized granulosa cell line that transitions from the gonadotropin-independent to the gonadotropin-dependent status. Endocrinology. 153:2851–2860. 2012. View Article : Google Scholar : PubMed/NCBI

42 

van den Berg-Bakker CA, Hagemeijer A, Franken-Postma EM, Smit VT, Kuppen PJ, van Ravenswaay Claasen HH, Cornelisse CJ and Schrier PI: Establishment and characterization of 7 ovarian carcinoma cell lines and one granulosa tumor cell line: Growth features and cytogenetics. Int J Cancer. 53:613–620. 1993. View Article : Google Scholar : PubMed/NCBI

43 

Zhang H, Vollmer M, De Geyter M, Litzistorf Y, Ladewig A, Dürrenberger M, Guggenheim R, Miny P, Holzgreve W and De Geyter C: Characterization of an immortalized human granulosa cell line (COV434). Mol Hum Reprod. 6:146–153. 2000. View Article : Google Scholar : PubMed/NCBI

44 

Kondo H, Kiguchi K, Okamura A, Okuma Y, Iida T, Kobayashi Y, Takagi M, Ishizuka B and Ishiwata I: Establishment and characterization of a human ovarian granulosa tumor cell line (HSOGT). Hum Cell. 16:123–129. 2003. View Article : Google Scholar : PubMed/NCBI

45 

Lie BL, Leung E, Leung PC and Auersperg N: Long-term growth and steroidogenic potential of human granulosa-lutein cells immortalized with SV40 large T antigen. Mol Cell Endocrinol. 120:169–176. 1996. View Article : Google Scholar : PubMed/NCBI

46 

Hosokawa K, Dantes A, Schere-Levy C, Barash A, Yoshida Y, Kotsuji F, Vlodavsky I and Amsterdam A: Induction of Ad4BP/SF-1, steroidogenic acute regulatory protein, and cytochrome P450scc enzyme system expression in newly established human granulosa cell lines. Endocrinology. 139:4679–4687. 1998. View Article : Google Scholar : PubMed/NCBI

47 

Tajima K, Hosokawa K, Yoshida Y, Dantes A, Sasson R, Kotsuji F and Amsterdam A: Establishment of FSH-responsive cell lines by transfection of pre-ovulatory human granulosa cells with mutated p53 (p53val135) and Ha-ras genes. Mol Hum Reprod. 8:48–57. 2002. View Article : Google Scholar : PubMed/NCBI

48 

Nishi Y, Yanase T, Mu Y, Oba K, Ichino I, Saito M, Nomura M, Mukasa C, Okabe T, Goto K, et al: Establishment and characterization of a steroidogenic human granulosa-like tumor cell line, KGN, that expresses functional follicle-stimulating hormone receptor. Endocrinology. 142:437–445. 2001. View Article : Google Scholar : PubMed/NCBI

49 

Okamura H, Katabuchi H and Ohba T: What we have learned from isolated cells from human ovary? Mol Cell Endocrinol. 202:37–45. 2003. View Article : Google Scholar : PubMed/NCBI

50 

Nguyen TD, Filliatreau L, Klett D and Combarnous Y: Comparative effects of sub-stimulating concentrations of non-human versus human Luteinizing Hormones (LH) or chorionic gonadotropins (CG) on adenylate cyclase activation by forskolin in MLTC cells. Gen Comp Endocrinol. 261:23–30. 2018. View Article : Google Scholar : PubMed/NCBI

51 

Reed BG and Carr BR: The Normal Menstrual Cycle and the Control of Ovulation. Endotext [Internet]. Feingold KR, Anawalt B, Boyce A, et al: MDText.com; South Dartmouth, MA: 2000

52 

Gloaguen P, Crépieux P, Heitzler D, Poupon A and Reiter E: Mapping the follicle-stimulating hormone-induced signaling networks. Front Endocrinol (Lausanne). 2:452011. View Article : Google Scholar : PubMed/NCBI

53 

Virant-Klun I, Rozman P, Cvjeticanin B, Vrtacnik-Bokal E, Novakovic S, Rülicke T, Dovc P and Meden-Vrtovec H: Parthenogenetic embryo-like structures in the human ovarian surface epithelium cell culture in postmenopausal women with no naturally present follicles and oocytes. Stem Cells Dev. 18:137–149. 2009. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

September 2019
Volume 18 Issue 3

Print ISSN: 1792-0981
Online ISSN:1792-1015

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Ai, A., Tang, Z., Liu, Y., Yu, S., Li, B., Huang, H. ... Zhang, W. (2019). Characterization and identification of human immortalized granulosa cells derived from ovarian follicular fluid. Experimental and Therapeutic Medicine, 18, 2167-2177. https://doi.org/10.3892/etm.2019.7802
MLA
Ai, A., Tang, Z., Liu, Y., Yu, S., Li, B., Huang, H., Wang, X., Cao, Y., Zhang, W."Characterization and identification of human immortalized granulosa cells derived from ovarian follicular fluid". Experimental and Therapeutic Medicine 18.3 (2019): 2167-2177.
Chicago
Ai, A., Tang, Z., Liu, Y., Yu, S., Li, B., Huang, H., Wang, X., Cao, Y., Zhang, W."Characterization and identification of human immortalized granulosa cells derived from ovarian follicular fluid". Experimental and Therapeutic Medicine 18, no. 3 (2019): 2167-2177. https://doi.org/10.3892/etm.2019.7802