Open Access

Eldecalcitol effects on osteoblastic differentiation and function in the presence or absence of osteoclastic bone resorption

  • Authors:
    • Jie Bu
    • Juan Du
    • Lina Shi
    • Wei Feng
    • Wei Wang
    • Jie Guo
    • Tomoka Hasegawa
    • Hongrui Liu
    • Xuxia Wang
    • Minqi Li
  • View Affiliations

  • Published online on: July 17, 2019     https://doi.org/10.3892/etm.2019.7784
  • Pages: 2111-2121
  • Copyright: © Bu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Eldecalcitol (ELD) is an active vitamin D3 analog, possesses anti‑resorption properties and is an approved therapeutic drug for the treatment of osteoporosis in Japan. However, the effect of ELD on osteoblasts in a distinct cell microenvironment, including in the presence or absence of osteoclastic bone resorption, is undetermined. In the current study, the effect of bone resorption supernatant on the ELD‑mediated regulation of viability, differentiation and receptor activator of ΝF‑κB ligand/osteoprotegerin (RANKL/OPG) expression was assessed in MC3T3‑E1 pre‑osteoblast cells. The murine macrophage‑like cell line RAW 264.7 was induced to differentiate into functional osteoblasts. Bone resorption supernatant was prepared by culturing osteoclast with a bovine cortical bone specimen. Mouse MC3T3‑E1 cells were subsequently treated with ELD combined with differentiated osteoclast cell culture (OCS) or osteoclast bone resorption model supernatants. Cell counting kit‑8, alkaline phosphatase (ALP) activity, reverse transcription‑quantitative (RT‑q) PCR and western blot analysis were used to assess cell viability, osteogenic activity and RANKL and OPG expression in MC3T3‑E1 cells. The OCS and OCS + ELD treatment exhibited significantly increased MC3T3‑E1 cell viability when compared with the control group. However, ELD, bone resorption culture supernatant (BRS) and ELD + BRS treatments significantly decreased MC3T3‑E1 cell viability. The results of ALP activity analysis, RT‑qPCR and western blot analysis demonstrated that ELD treatment and OCS decreased the osteogenic markers (ALP and RUNX2), however, BRS increased them. All treatments enhanced the expression of RANKL and RANKL/OPG ratio. The results of the current study revealed that ELD inhibits osteoblastic differentiation in vitro. However, in the presence of BRS, which mimics the local bone microenvironment in vivo, the net effect on osteogenesis was positive. Furthermore, osteoclasts and bone matrix‑derived factors increased the RANKL/OPG ratio, thereby potentiating osteoclastic activity.

References

1 

Hadjidakis DJ and Androulakis II: Bone remodeling. Ann N Y Acad Sci. 1092:385–396. 2006. View Article : Google Scholar : PubMed/NCBI

2 

Matsuo K and Irie N: Osteoclast-osteoblast communication. Arch Biochem Biophys. 473:201–209. 2008. View Article : Google Scholar : PubMed/NCBI

3 

Tamma R and Zallone A: Osteoblast and osteoclast crosstalks: From OAF to Ephrin. Inflamm Allergy Drug Targets. 11:196–200. 2012. View Article : Google Scholar : PubMed/NCBI

4 

Ueno Y, Shinki T, Nagai Y, Murayama H, Fujii K and Suda T: In vivo administration of 1,25-dihydroxyvitamin D3 suppresses the expression of RANKL mRNA in bone of thyroparathyroidectomized rats constantly infused with PTH. J Cell Biochem. 90:267–277. 2003. View Article : Google Scholar : PubMed/NCBI

5 

van Driel M and van Leeuwen JP: Vitamin D endocrine system and osteoblasts. Bonekey Rep. 3:4932014. View Article : Google Scholar : PubMed/NCBI

6 

Pèrez A, Chen TC, Turner A, Raab R, Bhawan J, Poche P and Holick MF: Efficacy and safety of topical calcitriol (1,25-dihydroxyvitamin d3) for the treatment of psoriasis. Br J Dermatol. 134:238–246. 1996. View Article : Google Scholar : PubMed/NCBI

7 

Guyton KZ, Kensler TW and Posner GH: Cancer chemoprevention using natural vitamin D and synthetic analogs. Annu Rev Pharmacol Toxicol. 41:421–442. 2001. View Article : Google Scholar : PubMed/NCBI

8 

Nishii Y: Active vitamin D and its analogs as drugs for the treatment of osteoporosis: Advantages and problems. J Bone Miner Metab. 20:57–65. 2002. View Article : Google Scholar : PubMed/NCBI

9 

Nishii Y and Okano T: History of the development of new vitamin D analogs: Studies on 22-oxacalcitriol (OCT) and 2beta- (3-hydroxypropoxy)calcitriol (ED-71). Steroids. 66:137–146. 2001. View Article : Google Scholar : PubMed/NCBI

10 

Nishii Y: Rationale for active vitamin D and analogs in the treatment of osteoporosis. J Cell Biochem. 88:381–386. 2003. View Article : Google Scholar : PubMed/NCBI

11 

Mano H, Nishikawa M, Yasuda K, Ikushiro S, Saito N, Takano M, Kittaka A and Sakaki T: Development of novel bioluminescent sensor to detect and discriminate between vitamin D receptor agonists and antagonists in living cells. Bioconjug Chem. 26:2038–2045. 2015. View Article : Google Scholar : PubMed/NCBI

12 

Matsumoto T, Miki T, Hagino H, Sugimoto T, Okamoto S, Hirota T, Tanigawara Y, Hayashi Y, Fukunaga M, Shiraki M and Nakamura T: A new active vitamin D, ED-71, increases bone mass in osteoporotic patients under vitamin D supplementation: A randomized, double-blind, placebo-controlled clinical trial. J Clin Endocrinol Metab. 90:5031–5036. 2005. View Article : Google Scholar : PubMed/NCBI

13 

Matsumoto T, Takano T, Yamakido S, Takahashi F and Tsuji N: Comparison of the effects of eldecalcitol and alfacalcidol on bone and calcium metabolism. J Steroid Biochem Mol Biol. 121:261–264. 2010. View Article : Google Scholar : PubMed/NCBI

14 

Hatakeyama S, Yoshino M, Eto K, Takahashi K, Ishihara J, Ono Y, Saito H and Kubodera N: Synthesis and preliminary biological evaluation of 20-epi-eldecalcitol [20-epi-1alpha,25- dihydroxy-2beta-(3-hydroxypropoxy)vitamin D3: 20-epi-ED-71]. J Steroid Biochem Mol Biol. 121:25–28. 2010. View Article : Google Scholar : PubMed/NCBI

15 

Uchiyama Y, Higuchi Y, Takeda S, Masaki T, Shira-Ishi A, Sato K, Kubodera N, Ikeda K and Ogata E: ED-71, a vitamin D analog, is a more potent inhibitor of bone resorption than alfacalcidol in an estrogen-deficient rat model of osteoporosis. Bone. 30:582–588. 2002. View Article : Google Scholar : PubMed/NCBI

16 

Tang Y, Wu X, Lei W, Pang L, Wan C, Shi Z, Zhao L, Nagy TR, Peng X, Hu J, et al: TGF-beta1-induced migration of bone mesenchymal stem cells couples bone resorption with formation. Nat Med. 15:757–765. 2009. View Article : Google Scholar : PubMed/NCBI

17 

Weivoda MM, Ruan M, Pederson L, Hachfeld C, Davey RA, Zajac JD, Westendorf JJ, Khosla S and Oursler MJ: Osteoclast TGF-β receptor signaling induces Wnt1 secretion and couples bone resorption to bone formation. J Bone Miner Res. 31:76–85. 2016. View Article : Google Scholar : PubMed/NCBI

18 

Xian L, Wu X, Pang L, Lou M, Rosen CJ, Qiu T, Crane J, Frassica F, Zhang L, Rodriguez JP, et al: Matrix IGF-1 maintains bone mass by activation of mTOR in mesenchymal stem cells. Nat Med. 18:1095–1101. 2012. View Article : Google Scholar : PubMed/NCBI

19 

Engelholm LH, Melander MC, Hald A, Persson M, Madsen DH, Jürgensen HJ, Johansson K, Nielsen C, Nørregaard KS, Ingvarsen SZ, et al: Targeting a novel bone degradation pathway in primary bone cancer by inactivation of the collagen receptor uPARAP/Endo180. J Pathol. 238:120–133. 2016. View Article : Google Scholar : PubMed/NCBI

20 

Boeyens JC, Deepak V, Chua WH, Kruger MC, Joubert AM and Coetzee M: Effects of ω3- and ω6-polyunsaturated fatty acids on RANKL-induced osteoclast differentiation of RAW264.7 cells: A comparative in vitro study. Nutrients. 6:2584–2601. 2014. View Article : Google Scholar : PubMed/NCBI

21 

Lee YS, Kim YS, Lee SY, Kim GH, Kim BJ, Lee SH, Lee KU, Kim GS, Kim SW and Koh JM: AMP kinase acts as a negative regulator of RANKL in the differentiation of osteoclasts. Bone. 47:926–937. 2010. View Article : Google Scholar : PubMed/NCBI

22 

Choi SW, Son YJ, Yun JM and Kim SH: Fisetin inhibits osteoclast differentiation via downregulation of p38 and c-Fos-NFATc1 signaling pathways. Evid Based Complement Alternat Med. 2012:8105632012. View Article : Google Scholar : PubMed/NCBI

23 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001. View Article : Google Scholar : PubMed/NCBI

24 

Zauli G, Rimondi E, Nicolin V, Melloni E, Celeghini C and Secchiero P: TNF-related apoptosis-inducing ligand (TRAIL) blocks osteoclastic differentiation induced by RANKL plus M-CSF. Blood. 104:2044–2050. 2004. View Article : Google Scholar : PubMed/NCBI

25 

Kim MH, Shim KS, Lee SU, Kim YS, Min YK and Kim SH: Stimulatory effect of undecylenic acid on mouse osteoblast differentiation. Phytother Res. 24:559–564. 2010.PubMed/NCBI

26 

Kubota K, Sakikawa C, Katsumata M, Nakamura T and Wakabayashi K: Platelet-derived growth factor BB secreted from osteoclasts acts as an osteoblastogenesis inhibitory factor. J Bone Miner Res. 17:257–265. 2010. View Article : Google Scholar

27 

Tanaka Y, Nakayamada S and Okada Y: Osteoblasts and osteoclasts in bone remodeling and inflammation. Curr Drug Targets Inflamm Allergy. 4:325–328. 2005. View Article : Google Scholar : PubMed/NCBI

28 

Nishiya Y and Sugimoto S: Effects of various antihypertensive drugs on the function of osteoblast. Biol Pharm Bull. 24:628–633. 2001. View Article : Google Scholar : PubMed/NCBI

29 

Toray H, Hasegawa T, Sakagami N, Tsuchiya E, Kudo A, Zhao S, Moritani Y, Abe M, Yoshida T, Yamamoto T, et al: Histochemical assessment for osteoblastic activity coupled with dysfunctional osteoclasts in c-src deficient mice. Biomed Res. 38:123–134. 2017. View Article : Google Scholar : PubMed/NCBI

30 

Komori T: Regulation of bone development and extracellular matrix protein genes by RUNX2. Cell Tissue Res. 339:189–195. 2010. View Article : Google Scholar : PubMed/NCBI

31 

Hoemann CD, El-Gabalawy H and McKee MD: In vitro osteogenesis assays: Influence of the primary cell source on alkaline phosphatase activity and mineralization. Pathol Biol (Paris). 57:318–323. 2009. View Article : Google Scholar : PubMed/NCBI

32 

Han Y, You X, Xing W, Zhang Z and Zou W: Paracrine and endocrine actions of bone-the functions of secretory proteins from osteoblasts, osteocytes, and osteoclasts. Bone Res. 6:162018. View Article : Google Scholar : PubMed/NCBI

33 

Kurihara N, Ishizuka S, Kiyoki M, Haketa Y, Ikeda K and Kumegawa M: Effects of 1,25-dihydroxyvitamin D3 on osteoblastic MC3T3-E1 cells. Endocrinology. 118:940–947. 1986. View Article : Google Scholar : PubMed/NCBI

34 

van den Bemd GJ, Pols HA, Birkenhäger JC, Kleinekoort WM and van Leeuwen JP: Differential effects of 1,25-dihydroxyvitamin D3-analogs on osteoblast-like cells and on in vitro bone resorption. J Steroid Biochem Mol Biol. 55:337–346. 1995. View Article : Google Scholar : PubMed/NCBI

35 

Haneji T, Kurihara N, Ikeda K and Kumegawa M: 1 alpha, 25-Dihydroxyvitamin D3 and analogues of vitamin D3 induce alkaline phosphatase activity in osteoblastic cells derived from newborn mouse calvaria. J Biochem. 94:1127–1132. 1983. View Article : Google Scholar : PubMed/NCBI

36 

Majeska RJ and Rodan GA: The effect of 1,25(OH)2D3 on alkaline phosphatase in osteoblastic osteosarcoma cells. J Biol Chem. 257:3362–3365. 1982.PubMed/NCBI

37 

Jones G: Pharmacokinetics of vitamin D toxicity. Am J Clin Nutr. 88:582S–586S. 2008. View Article : Google Scholar : PubMed/NCBI

38 

Centrella M, McCarthy TL, Kusmik WF and Canalis E: Relative binding and biochemical effects of heterodimeric and homodimeric isoforms of platelet-derived growth factor in osteoblast-enriched cultures from fetal rat bone. J Cell Physiol. 147:420–426. 1991. View Article : Google Scholar : PubMed/NCBI

39 

Yu X, Hsieh SC, Bao W and Graves DT: Temporal expression of PDGF receptors and PDGF regulatory effects on osteoblastic cells in mineralizing cultures. Am J Physiol. 272:C1709–C1716. 1997. View Article : Google Scholar : PubMed/NCBI

40 

Ryu J, Kim HJ, Chang EJ, Huang H, Banno Y and Kim HH: Sphingosine 1-phosphate as a regulator of osteoclast differentiation and osteoclast-osteoblast coupling. EMBO J. 25:5840–5851. 2006. View Article : Google Scholar : PubMed/NCBI

41 

Chen LL, Wang K, Zhang J and Wu YM: Effect of the bone resorption supernatant from RAW264.7 osteoclast on the osteogenic activity of mouse MC3T3-E1 cell. Zhonghua Kou Qiang Yi Xue Za Zhi. 47:32–37. 2012.(In Chinese). PubMed/NCBI

42 

Howard GA, Bottemiller BL, Turner RT, Rader JI and Baylink DJ: Parathyroid hormone stimulates bone formation and resorption in organ culture: Evidence for a coupling mechanism. Proc Natl Acad Sci USA. 78:3204–3208. 1981. View Article : Google Scholar : PubMed/NCBI

43 

Martin TJ and Sims NA: Osteoclast-derived activity in the coupling of bone formation to resorption. Trends Mol Med. 11:76–81. 2005. View Article : Google Scholar : PubMed/NCBI

44 

Karsdal MA, Martin TJ, Bollerslev J, Christiansen C and Henriksen K: Are nonresorbing osteoclasts sources of bone anabolic activity? J Bone Miner Res. 22:487–494. 2007. View Article : Google Scholar : PubMed/NCBI

45 

Sakagami N, Amizuka N, Li M, Takeuchi K, Hoshino M, Nakamura M, Nozawa-Inoue K, Udagawa N and Maeda T: Reduced osteoblastic population and defective mineralization in osteopetrotic (op/op) mice. Micron. 36:688–695. 2005. View Article : Google Scholar : PubMed/NCBI

46 

Grigoriadis AE, Wang ZQ, Cecchini MG, Hofstetter W, Felix R, Fleisch HA and Wagner EF: c-Fos: A key regulator of osteoclast-macrophage lineage determination and bone remodeling. Science. 266:443–448. 1994. View Article : Google Scholar : PubMed/NCBI

47 

Soriano P, Montgomery C, Geske R and Bradley A: Targeted disruption of the c-src proto-oncogene leads to osteopetrosis in mice. Cell. 64:693–702. 1991. View Article : Google Scholar : PubMed/NCBI

48 

Gray C, Boyde A and Jones SJ: Topographically induced bone formation in vitro: Implications for bone implants and bone grafts. Bone. 18:115–123. 1996. View Article : Google Scholar : PubMed/NCBI

49 

Kalu DN, Doyle FH, Pennock J, Denys-Matrajt H and Foster GV: Anabolic effect of parathyroid hormone on bone in the rat. Calcif Tissue Res. (Suppl):S721970. View Article : Google Scholar

50 

Baldock PA, Thomas GP, Hodge JM, Baker SU, Dressel U, O'Loughlin PD, Nicholson GC, Briffa KH, Eisman JA and Gardiner EM: Vitamin D action and regulation of bone remodeling: Suppression of osteoclastogenesis by the mature osteoblast. J Bone Miner Res. 21:1618–1626. 2006. View Article : Google Scholar : PubMed/NCBI

51 

Schwarz P, Brixen KT and Mosekilde L: Calcium homeostasis and normal bone remodeling. Ugeskr Laeger. 167:871–873. 2005.(In Danish). PubMed/NCBI

52 

Sanchez-Fernandez MA, Gallois A, Riedl T, Jurdic P and Hoflack B: Osteoclasts control osteoblast chemotaxis via PDGF-BB/PDGF receptor beta signaling. PLoS One. 3:e35372008. View Article : Google Scholar : PubMed/NCBI

53 

Lotinun S, Kiviranta R, Matsubara T, Alzate JA, Neff L, Lüth A, Koskivirta I, Kleuser B, Vacher J, Vuorio E, et al: Osteoclast-specific cathepsin K deletion stimulates S1P-dependent bone formation. J Clin Invest. 123:666–681. 2013.PubMed/NCBI

54 

Noguchi Y, Kawate H, Nomura M and Takayanagi R: Eldecalcitol for the treatment of osteoporosis. Clin Interv Aging. 8:1313–1321. 2013.PubMed/NCBI

55 

Suda T, Takahashi F and Takahashi N: Bone effects of vitamin D-Discrepancies between in vivo and in vitro studies. Arch Biochem Biophys. 523:22–29. 2012. View Article : Google Scholar : PubMed/NCBI

56 

Shi YC, Worton L, Esteban L, Baldock P, Fong C, Eisman JA and Gardiner EM: Effects of continuous activation of vitamin D and Wnt response pathways on osteoblastic proliferation and differentiation. Bone. 41:87–96. 2007. View Article : Google Scholar : PubMed/NCBI

57 

Chen YC, Ninomiya T, Hosoya A, Hiraga T, Miyazawa H and Nakamura H: 1α,25-Dihydroxyvitamin D3 inhibits osteoblastic differentiation of mouse periodontal fibroblasts. Arch Oral Biol. 57:453–459. 2012. View Article : Google Scholar : PubMed/NCBI

58 

Tanaka H and Seino Y: Direct action of 1,25-dihydroxyvitamin D on bone: VDRKO bone shows excessive bone formation in normal mineral condition. J Steroid Biochem Mol Biol. 89:343–345. 2004. View Article : Google Scholar : PubMed/NCBI

59 

Yamamoto Y, Yoshizawa T, Fukuda T, Shirode-Fukuda Y, Yu T, Sekine K, Sato T, Kawano H, Aihara K, Nakamichi Y, et al: Vitamin D receptor in osteoblasts is a negative regulator of bone mass control. Endocrinology. 154:1008–1020. 2013. View Article : Google Scholar : PubMed/NCBI

60 

Nakamichi Y, Udagawa N, Horibe K, Mizoguchi T, Yamamoto Y, Nakamura T, Hosoya A, Kato S, Suda T and Takahashi N: VDR in osteoblast-lineage cells primarily mediates vitamin D treatment-induced increase in bone mass by suppressing bone resorption. J Bone Miner Res. 32:1297–1308. 2017. View Article : Google Scholar : PubMed/NCBI

61 

Amling M, Priemel M, Holzmann T, Chapin K, Rueger JM, Baron R and Demay MB: Rescue of the skeletal phenotype of vitamin D receptor-ablated mice in the setting of normal mineral ion homeostasis: Formal histomorphometric and biomechanical analyses. Endocrinology. 140:4982–4987. 1999. View Article : Google Scholar : PubMed/NCBI

62 

Lieben L and Carmeliet G: The delicate balance between vitamin D, calcium and bone homeostasis: Lessons learned from intestinal- and osteocyte-specific VDR null mice. J Steroid Biochem Mol Biol. 136:102–106. 2013. View Article : Google Scholar : PubMed/NCBI

63 

Lee SK, Kalinowski J, Jastrzebski S and Lorenzo JA: 1,25(OH)2 vitamin D3-stimulated osteoclast formation in spleen-osteoblast cocultures is mediated in part by enhanced IL-1 alpha and receptor activator of NF-kappa B ligand production in osteoblasts. J Immunol. 169:2374–2380. 2002. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

September 2019
Volume 18 Issue 3

Print ISSN: 1792-0981
Online ISSN:1792-1015

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Bu, J., Du, J., Shi, L., Feng, W., Wang, W., Guo, J. ... Li, M. (2019). Eldecalcitol effects on osteoblastic differentiation and function in the presence or absence of osteoclastic bone resorption. Experimental and Therapeutic Medicine, 18, 2111-2121. https://doi.org/10.3892/etm.2019.7784
MLA
Bu, J., Du, J., Shi, L., Feng, W., Wang, W., Guo, J., Hasegawa, T., Liu, H., Wang, X., Li, M."Eldecalcitol effects on osteoblastic differentiation and function in the presence or absence of osteoclastic bone resorption". Experimental and Therapeutic Medicine 18.3 (2019): 2111-2121.
Chicago
Bu, J., Du, J., Shi, L., Feng, W., Wang, W., Guo, J., Hasegawa, T., Liu, H., Wang, X., Li, M."Eldecalcitol effects on osteoblastic differentiation and function in the presence or absence of osteoclastic bone resorption". Experimental and Therapeutic Medicine 18, no. 3 (2019): 2111-2121. https://doi.org/10.3892/etm.2019.7784