Open Access

Oxygen‑induced circRNA profiles and coregulatory networks in a retinopathy of prematurity mouse model

  • Authors:
    • Huiting Zhou
    • Huihui Song
    • Yi Wu
    • Xiang Liu
    • Jing Li
    • He Zhao
    • Miaomiao Tang
    • Xiaoyuan Ji
    • Lu Zhang
    • Yuanyuan Su
    • Yao He
    • Kehong Feng
    • Yang Jiao
    • Hua Xu
  • View Affiliations

  • Published online on: July 26, 2019     https://doi.org/10.3892/etm.2019.7819
  • Pages: 2037-2050
  • Copyright: © Zhou et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Retinopathy of prematurity (ROP) is a leading cause of childhood blindness. At present, the molecular mechanisms underlying ROP are still far from being clearly understood. Circular RNAs (circRNAs), a novel class of noncoding RNAs, have been reported to serve vital regulatory roles in several human diseases. However, it is still unclear how circRNAs are involved in ROP. In the present study, oxygen‑induced retinopathy (OIR) murine retinal samples and paired normal tissues were chosen for high‑throughput transcriptome RNA sequencing and bioinformatic analyses. As a result, a total of 236 differentially expressed circRNAs, 14 differentially expressed miRNAs, and 9,756 differentially expressed mRNAs were identified in the OIR samples. Gene ontology analysis showed that angiogenesis ranked in the top five upregulated biological processes associated with differential mRNA expression. Then, 66 co‑expression pairs of circRNA‑mRNA were predicted according to the mRNAs that were enriched in angiogenesis. Furthermore, coregulation prediction was separately performed to identify the differentially expressed miRNAs that targeted angiogenesis‑associated circRNAs or mRNAs. Finally, nine differentially expressed circRNAs were predicted to be competing endogenous RNAs by constructing a circRNA‑miRNA‑mRNA network followed by reverse transcription‑quantitative PCR validation. The results of the present study suggest that the identified set of circRNA transcripts and the potential regulatory mechanisms for the development of ROP are worthy of functional studies.

Related Articles

Journal Cover

September 2019
Volume 18 Issue 3

Print ISSN: 1792-0981
Online ISSN:1792-1015

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Zhou, H., Song, H., Wu, Y., Liu, X., Li, J., Zhao, H. ... Xu, H. (2019). Oxygen‑induced circRNA profiles and coregulatory networks in a retinopathy of prematurity mouse model. Experimental and Therapeutic Medicine, 18, 2037-2050. https://doi.org/10.3892/etm.2019.7819
MLA
Zhou, H., Song, H., Wu, Y., Liu, X., Li, J., Zhao, H., Tang, M., Ji, X., Zhang, L., Su, Y., He, Y., Feng, K., Jiao, Y., Xu, H."Oxygen‑induced circRNA profiles and coregulatory networks in a retinopathy of prematurity mouse model". Experimental and Therapeutic Medicine 18.3 (2019): 2037-2050.
Chicago
Zhou, H., Song, H., Wu, Y., Liu, X., Li, J., Zhao, H., Tang, M., Ji, X., Zhang, L., Su, Y., He, Y., Feng, K., Jiao, Y., Xu, H."Oxygen‑induced circRNA profiles and coregulatory networks in a retinopathy of prematurity mouse model". Experimental and Therapeutic Medicine 18, no. 3 (2019): 2037-2050. https://doi.org/10.3892/etm.2019.7819