Open Access

Oxygen‑induced circRNA profiles and coregulatory networks in a retinopathy of prematurity mouse model

  • Authors:
    • Huiting Zhou
    • Huihui Song
    • Yi Wu
    • Xiang Liu
    • Jing Li
    • He Zhao
    • Miaomiao Tang
    • Xiaoyuan Ji
    • Lu Zhang
    • Yuanyuan Su
    • Yao He
    • Kehong Feng
    • Yang Jiao
    • Hua Xu
  • View Affiliations

  • Published online on: July 26, 2019     https://doi.org/10.3892/etm.2019.7819
  • Pages: 2037-2050
  • Copyright: © Zhou et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Retinopathy of prematurity (ROP) is a leading cause of childhood blindness. At present, the molecular mechanisms underlying ROP are still far from being clearly understood. Circular RNAs (circRNAs), a novel class of noncoding RNAs, have been reported to serve vital regulatory roles in several human diseases. However, it is still unclear how circRNAs are involved in ROP. In the present study, oxygen‑induced retinopathy (OIR) murine retinal samples and paired normal tissues were chosen for high‑throughput transcriptome RNA sequencing and bioinformatic analyses. As a result, a total of 236 differentially expressed circRNAs, 14 differentially expressed miRNAs, and 9,756 differentially expressed mRNAs were identified in the OIR samples. Gene ontology analysis showed that angiogenesis ranked in the top five upregulated biological processes associated with differential mRNA expression. Then, 66 co‑expression pairs of circRNA‑mRNA were predicted according to the mRNAs that were enriched in angiogenesis. Furthermore, coregulation prediction was separately performed to identify the differentially expressed miRNAs that targeted angiogenesis‑associated circRNAs or mRNAs. Finally, nine differentially expressed circRNAs were predicted to be competing endogenous RNAs by constructing a circRNA‑miRNA‑mRNA network followed by reverse transcription‑quantitative PCR validation. The results of the present study suggest that the identified set of circRNA transcripts and the potential regulatory mechanisms for the development of ROP are worthy of functional studies.

References

1 

Hellstrom A, Smith LE and Dammann O: Retinopathy of prematurity. Lancet. 382:1445–1457. 2013. View Article : Google Scholar : PubMed/NCBI

2 

Fielder A, Blencowe H, O'Connor A and Gilbert C: Impact of retinopathy of prematurity on ocular structures and visual functions. Arch Dis Child Fetal Neonatal Ed. 100:F179–F184. 2015. View Article : Google Scholar : PubMed/NCBI

3 

Patz A, Hoeck LE and De La Cruz E: Studies on the effect of high oxygen administration in retrolental fibroplasia. I. Nursery observations. Am J Ophthalmol. 35:1248–1253. 1952. View Article : Google Scholar : PubMed/NCBI

4 

Ashton N: Pathological basis of retrolental fibroplasia. Br J Ophthalmol. 38:385–396. 1954. View Article : Google Scholar : PubMed/NCBI

5 

Smith LE, Wesolowski E, McLellan A, Kostyk SK, D'Amato R, Sullivan R and D'Amore PA: Oxygen-induced retinopathy in the mouse. Invest Ophthalmol Vis Sci. 35:101–111. 1994.PubMed/NCBI

6 

Connor KM, Krah NM, Dennison RJ, Aderman CM, Chen J, Guerin KI, Sapieha P, Stahl A, Willett KL and Smith LE: Quantification of oxygen-induced retinopathy in the mouse: A model of vessel loss, vessel regrowth and pathological angiogenesis. Nat Protoc. 4:1565–1573. 2009. View Article : Google Scholar : PubMed/NCBI

7 

Hartnett ME and Penn JS: Mechanisms and management of retinopathy of prematurity. N Engl J Med. 367:2515–2526. 2012. View Article : Google Scholar : PubMed/NCBI

8 

Chen J, Connor KM, Aderman CM and Smith LE: Erythropoietin deficiency decreases vascular stability in mice. J Clin Invest. 118:526–533. 2008.PubMed/NCBI

9 

Pierce EA, Avery RL, Foley ED, Aiello LP and Smith LE: Vascular endothelial growth factor/vascular permeability factor expression in a mouse model of retinal neovascularization. Proc Natl Acad Sci USA. 92:905–909. 1995. View Article : Google Scholar : PubMed/NCBI

10 

Pierce EA, Foley ED and Smith LE: Regulation of vascular endothelial growth factor by oxygen in a model of retinopathy of prematurity. Arch Ophthalmol. 114:1219–1228. 1996. View Article : Google Scholar : PubMed/NCBI

11 

Solebo AL, Teoh L and Rahi J: Epidemiology of blindness in children. Arch Dis Child. 102:853–857. 2017. View Article : Google Scholar : PubMed/NCBI

12 

Chan-Ling T, Gole GA, Quinn GE, Adamson SJ and Darlow BA: Pathophysiology, screening and treatment of ROP: A multi-disciplinary perspective. Prog Retin Eye Res. 62:77–119. 2018. View Article : Google Scholar : PubMed/NCBI

13 

Sato T, Kusaka S, Hashida N, Saishin Y, Fujikado T and Tano Y: Comprehensive gene-expression profile in murine oxygen-induced retinopathy. Br J Ophthalmol. 93:96–103. 2009. View Article : Google Scholar : PubMed/NCBI

14 

Wang Y, Wu S, Yang Y, Peng F, Li Q, Tian P, Xiang E, Liang H, Wang B, Zhou X, et al: Differentially expressed miRNAs in oxygeninduced retinopathy newborn mouse models. Mol Med Rep. 15:146–152. 2017. View Article : Google Scholar : PubMed/NCBI

15 

Shen J, Yang X, Xie B, Chen Y, Swaim M, Hackett SF and Campochiaro PA: MicroRNAs regulate ocular neovascularization. Mol Ther. 16:1208–1216. 2008. View Article : Google Scholar : PubMed/NCBI

16 

Bai Y, Bai X, Wang Z, Zhang X, Ruan C and Miao J: MicroRNA-126 inhibits ischemia-induced retinal neovascularization via regulating angiogenic growth factors. Exp Mol Pathol. 91:471–477. 2011. View Article : Google Scholar : PubMed/NCBI

17 

Tea M, Michael MZ, Brereton HM and Williams KA: Stability of small non-coding RNA reference gene expression in the rat retina during exposure to cyclic hyperoxia. Mol Vis. 19:501–508. 2013.PubMed/NCBI

18 

Zhao R, Hou W, Zhang Z, Qian L and Jiang L: Differential Expression of Mir-1 26 and Vascular endothelial growth factor in retinal cells of metabolic acidosis-induced neonatal rats. J Nanosci Nanotechnol. 15:2088–2093. 2015. View Article : Google Scholar : PubMed/NCBI

19 

Zhao R, Qian L and Jiang L: miRNA-dependent cross-talk between VEGF and Ang-2 in hypoxia-induced microvascular dysfunction. Biochem Biophys Res Commun. 452:428–435. 2014. View Article : Google Scholar : PubMed/NCBI

20 

Nunes DN, Dias-Neto E, Cardo-Vila M, Edwards JK, Dobroff AS, Giordano RJ, Mandelin J, Brentani HP, Hasselgren C, Yao VJ, et al: Synchronous down-modulation of miR-17 family members is an early causative event in the retinal angiogenic switch. Proc Natl Acad Sci USA. 112:3770–3775. 2015.PubMed/NCBI

21 

Chen XK, Ouyang LJ, Yin ZQ, Xia YY, Chen XR, Shi H, Xiong Y and Pi LH: Effects of microRNA-29a on retinopathy of prematurity by targeting AGT in a mouse model. Am J Transl Res. 9:791–801. 2017.PubMed/NCBI

22 

Memczak S, Jens M, Elefsinioti A, Torti F, Krueger J, Rybak A, Maier L, Mackowiak SD, Gregersen LH, Munschauer M, et al: Circular RNAs are a large class of animal RNAs with regulatory potency. Nature. 495:333–338. 2013. View Article : Google Scholar : PubMed/NCBI

23 

Fischer JW and Leung AK: CircRNAs: A regulator of cellular stress. Crit Rev Biochem Mol Biol. 52:220–233. 2017. View Article : Google Scholar : PubMed/NCBI

24 

Han J, Gao L, Dong J, Bai J, Zhang M and Zheng J: The expression profile of developmental stage-dependent circular RNA in the immature rat retina. Mol Vis. 23:457–469. 2017.PubMed/NCBI

25 

Singh M, George AK, Homme RP, Majumder A, Laha A, Sandhu HS and Tyagi SC: Circular RNAs profiling in the cystathionine-beta-synthase mutant mouse reveals novel gene targets for hyperhomocysteinemia induced ocular disorders. Exp Eye Res. 174:80–92. 2018. View Article : Google Scholar : PubMed/NCBI

26 

Luo Y, Liu S and Yao K: Transcriptome-wide Investigation of mRNA/circRNA in miR-184 and Its r.57c>u mutant type treatment of human lens epithelial cells. Mol Ther Nucleic Acids. 7:71–80. 2017. View Article : Google Scholar : PubMed/NCBI

27 

Xu H, Zhang L, Gu L, Gao G, Li W, Xu G, Wang J, Gao F, Xu JY, Yao J, et al: Subretinal delivery of AAV2-mediated human erythropoietin gene is protective and safe in experimental diabetic retinopathy. Invest Ophthalmol Vis Sci. 55:1519–1530. 2014. View Article : Google Scholar : PubMed/NCBI

28 

Zhu KP, Zhang CL, Ma XL, Hu JP, Cai T and Zhang L: Analyzing the interactions of mRNAs and ncRNAs to predict competing endogenous RNA networks in osteosarcoma chemo-resistance. Mol Ther. 27:518–530. 2019. View Article : Google Scholar : PubMed/NCBI

29 

Gao Y, Wang J and Zhao F: CIRI: An efficient and unbiased algorithm for de novo circular RNA identification. Genome Biol. 16:42015. View Article : Google Scholar : PubMed/NCBI

30 

Glazar P, Papavasileiou P and Rajewsky N: circBase: A database for circular RNAs. Rna. 20:1666–1670. 2014. View Article : Google Scholar : PubMed/NCBI

31 

Anders S and Huber W: Differential expression analysis for sequence count data. Genome Biol. 11:R1062010. View Article : Google Scholar : PubMed/NCBI

32 

Huang da W, Sherman BT and Lempicki RA: Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Pro. 4:44–57. 2009. View Article : Google Scholar

33 

Kanehisa M, Araki M, Goto S, Hattori M, Hirakawa M, Itoh M, Katayama T, Kawashima S, Okuda S, Tokimatsu T and Yamanishi Y: KEGG for linking genomes to life and the environment. Nucleic Acids Res. 36:D480–484. 2008. View Article : Google Scholar : PubMed/NCBI

34 

John B, Enright AJ, Aravin A, Tuschl T, Sander C and Marks DS: Human MicroRNA targets. PLoS Biol. 2:e3632004. View Article : Google Scholar : PubMed/NCBI

35 

R Core Team (2012). R, . A language and environment for statistical computing. R Foundation for Statistical Computing; Vienna, Austria: ISBN 3-900051-07-0.

36 

Griffiths-Jones S, Bateman A, Marshall M, Khanna A and Eddy SR: Rfam: An RNA family database. Nucleic Acids Res. 31:439–441. 2003. View Article : Google Scholar : PubMed/NCBI

37 

Griffiths-Jones S, Saini HK, van Dongen S and Enright AJ: miRBase: Tools for microRNA genomics. Nucleic Acids Res. 36:D154–158. 2008. View Article : Google Scholar : PubMed/NCBI

38 

Friedlander MR, Mackowiak SD, Li N, Chen W and Rajewsky N: miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades. Nucleic Acids Res. 40:37–52. 2012. View Article : Google Scholar : PubMed/NCBI

39 

Sun L, Luo H, Bu D, Zhao G, Yu K, Zhang C, Liu Y, Chen R and Zhao Y: Utilizing sequence intrinsic composition to classify protein-coding and long non-coding transcripts. Nucleic Acids Res. 41:e1662013. View Article : Google Scholar : PubMed/NCBI

40 

Nie J, Zhang J, Wang L, Lu L, Yuan Q, An F, Zhang S and Jiao Y: Adipocytes promote cholangiocarcinoma metastasis through fatty acid binding protein 4. J Exp Clin Cancer Res. 36:1832017. View Article : Google Scholar : PubMed/NCBI

41 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001. View Article : Google Scholar : PubMed/NCBI

42 

Reynaud X and Dorey CK: Extraretinal neovascularization induced by hypoxic episodes in the neonatal rat. Invest Ophthalmol Vis Sci. 35:3169–3177. 1994.PubMed/NCBI

43 

Enright AJ, John B, Gaul U, Tuschl T, Sander C and Marks DS: MicroRNA targets in Drosophila. Genome Biol. 5:R12003. View Article : Google Scholar : PubMed/NCBI

44 

Zhang SJ, Chen X, Li CP, Li XM, Liu C, Liu BH, Shan K, Jiang Q, Zhao C and Yan B: Identification and characterization of circular RNAs as a new class of putative biomarkers in diabetes retinopathy. Invest Ophthalmol Vis Sci. 58:6500–6509. 2017. View Article : Google Scholar : PubMed/NCBI

45 

Gu Y, Ke G, Wang L, Zhou E, Zhu K and Wei Y: Altered expression profile of circular RNAs in the serum of patients with diabetic retinopathy revealed by microarray. Ophthalmic Res. 58:176–184. 2017. View Article : Google Scholar : PubMed/NCBI

46 

Ashton N: Animal experiments in retrolental fibroplasia. Trans Am Acad Ophthalmol Otolaryngol. 58:51–54. 1954.PubMed/NCBI

47 

Jiang Z, Zhou X, Li R, Michal JJ, Zhang S, Dodson MV, Zhang Z and Harland RM: Whole transcriptome analysis with sequencing: Methods, challenges and potential solutions. Cell Mol Life Sci. 72:3425–3439. 2015. View Article : Google Scholar : PubMed/NCBI

48 

Mammoto A, Connor KM, Mammoto T, Yung CW, Huh D, Aderman CM, Mostoslavsky G, Smith LE and Ingber DE: A mechanosensitive transcriptional mechanism that controls angiogenesis. Nature. 457:1103–1108. 2009. View Article : Google Scholar : PubMed/NCBI

49 

Tay Y, Rinn J and Pandolfi PP: The multilayered complexity of ceRNA crosstalk and competition. Nature. 505:344–352. 2014. View Article : Google Scholar : PubMed/NCBI

50 

Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK and Kjems J: Natural RNA circles function as efficient microRNA sponges. Nature. 495:384–388. 2013. View Article : Google Scholar : PubMed/NCBI

51 

Zhu X, Er K, Mao C, Yan Q, Xu H, Zhang Y, Zhu J, Cui F, Zhao W and Shi H: miR-203 suppresses tumor growth and angiogenesis by targeting VEGFA in cervical cancer. Cell Physiol Biochem. 32:64–73. 2013. View Article : Google Scholar : PubMed/NCBI

52 

Wang N, Liang H, Zhou Y, Wang C, Zhang S, Pan Y, Wang Y, Yan X, Zhang J, Zhang CY, et al: miR-203 suppresses the proliferation and migration and promotes the apoptosis of lung cancer cells by targeting SRC. PLoS One. 9:e1055702014. View Article : Google Scholar : PubMed/NCBI

53 

Tian X, Tao F, Zhang B, Dong JT and Zhang Z: The miR-203/SNAI2 axis regulates prostate tumor growth, migration, angiogenesis and stemness potentially by modulating GSK-3beta/beta-CATENIN signal pathway. IUBMB Life. 70:224–236. 2018. View Article : Google Scholar : PubMed/NCBI

54 

Lohcharoenkal W, Harada M, Loven J, Meisgen F, Landén NX, Zhang L, Lapins J, Mahapatra KD, Shi H, Nissinen L, et al: MicroRNA-203 inversely correlates with differentiation grade, targets c-MYC, and functions as a tumor suppressor in cSCC. J Invest Dermatol. 136:2485–2494. 2016. View Article : Google Scholar : PubMed/NCBI

55 

Lohcharoenkal W, Das Mahapatra K, Pasquali L, Crudden C, Kular L, Akkaya Ulum YZ, Zhang L, Xu Landén N, Girnita L, Jagodic M, et al: Genome-wide screen for MicroRNAs reveals a role for miR-203 in melanoma metastasis. J Invest Dermatol. 138:882–892. 2018. View Article : Google Scholar : PubMed/NCBI

56 

Liu F, Wu W, Wu K, Chen Y, Wu H, Wang H and Zhang W: MiR-203 participates in human placental angiogenesis by inhibiting VEGFA and VEGFR2 expression. Reprod Sci. 25:358–365. 2018. View Article : Google Scholar : PubMed/NCBI

57 

Rajaram K, Harding RL, Hyde DR and Patton JG: miR-203 regulates progenitor cell proliferation during adult zebrafish retina regeneration. Dev Biol. 392:393–403. 2014. View Article : Google Scholar : PubMed/NCBI

58 

Choi SW, Shin JH, Kim JJ, Shin TH, Seo Y, Kim HS and Kang KS: Direct cell fate conversion of human somatic stem cells into cone and rod photoreceptor-like cells by inhibition of microRNA-203. Oncotarget. 7:42139–42149. 2016. View Article : Google Scholar : PubMed/NCBI

59 

Shanab AY, Elshaer SL, El-Azab MF, Soliman S, Sabbineni H, Matragoon S, Fagan SC and El-Remessy AB: Candesartan stimulates reparative angiogenesis in ischemic retinopathy model: Role of hemeoxygenase-1 (HO-1). Angiogenesis. 18:137–150. 2015. View Article : Google Scholar : PubMed/NCBI

60 

Soikkeli J, Podlasz P, Yin M, Nummela P, Jahkola T, Virolainen S, Krogerus L, Heikkilä P, von Smitten K, Saksela O and Hölttä E: Metastatic outgrowth encompasses COL-I, FN1, and POSTN up-regulation and assembly to fibrillar networks regulating cell adhesion, migration, and growth. Am J Pathol. 177:387–403. 2010. View Article : Google Scholar : PubMed/NCBI

61 

Segura I, Lange C, Knevels E, Moskalyuk A, Pulizzi R, Eelen G, Chaze T, Tudor C, Boulegue C, Holt M, et al: The Oxygen Sensor PHD2 controls dendritic spines and synapses via modification of filamin A. Cell Rep. 14:2653–2667. 2016. View Article : Google Scholar : PubMed/NCBI

62 

Raimondi C, Brash JT, Fantin A and Ruhrberg C: NRP1 function and targeting in neurovascular development and eye disease. Prog Retin Eye Res. 52:64–83. 2016. View Article : Google Scholar : PubMed/NCBI

63 

McLeod DS, Taomoto M, Cao J, Zhu Z, Witte L and Lutty GA: Localization of VEGF receptor-2 (KDR/Flk-1) and effects of blocking it in oxygen-induced retinopathy. Invest Ophthalmol Vis Sci. 43:474–482. 2002.PubMed/NCBI

64 

Tu F, Pang Q, Chen X, Huang T, Liu M and Zhai Q: Angiogenic effects of apigenin on endothelial cells after hypoxia-reoxygenation via the caveolin-1 pathway. Int J Mol Med. 40:1639–1648. 2017.PubMed/NCBI

65 

Behjati S, Tarpey PS, Sheldon H, Martincorena I, Van Loo P, Gundem G, Wedge DC, Ramakrishna M, Cooke SL, Pillay N, et al: Recurrent PTPRB and PLCG1 mutations in angiosarcoma. Nat Genet. 46:376–379. 2014. View Article : Google Scholar : PubMed/NCBI

66 

Jakubauskiene E, Vilys L, Makino Y, Poellinger L and Kanopka A: Increased serine-arginine (SR) protein phosphorylation changes Pre-mRNA splicing in hypoxia. J Biol Chem. 290:18079–18089. 2015. View Article : Google Scholar : PubMed/NCBI

67 

Peet DJ, Kittipassorn T, Wood JP, Chidlow G and Casson RJ: HIF signalling: The eyes have it. Exp Cell Res. 356:136–140. 2017. View Article : Google Scholar : PubMed/NCBI

68 

Lin Y, Jiang W, Ng J, Jina A and Wang RA: Endothelial ephrin-B2 is essential for arterial vasodilation in mice. Microcirculation. 21:578–586. 2014. View Article : Google Scholar : PubMed/NCBI

69 

Rose BA, Yokota T, Chintalgattu V, Ren S, Iruela-Arispe L, Khakoo AY, Minamisawa S and Wang Y: Cardiac myocyte p38alpha kinase regulates angiogenesis via myocyte-endothelial cell cross-talk during stress-induced remodeling in the heart. J Biol Chem. 292:12787–12800. 2017. View Article : Google Scholar : PubMed/NCBI

70 

Miroshnikova YA, Mouw JK, Barnes JM, Pickup MW, Lakins JN, Kim Y, Lobo K, Persson AI, Reis GF, McKnight TR, et al: Tissue mechanics promote IDH1-dependent HIF1alpha-tenascin C feedback to regulate glioblastoma aggression. Nat Cell Biol. 18:1336–1345. 2016. View Article : Google Scholar : PubMed/NCBI

71 

Conde-Perez A, Gros G, Longvert C, Pedersen M, Petit V, Aktary Z, Viros A, Gesbert F, Delmas V, Rambow F, et al: A caveolin-dependent and PI3K/AKT-independent role of PTEN in beta-catenin transcriptional activity. Nat Commun. 6:80932015. View Article : Google Scholar : PubMed/NCBI

72 

Liu C, Yao MD, Li CP, Shan K, Yang H, Wang JJ, Liu B, Li XM, Yao J, Jiang Q and Yan B: Silencing of circular RNA-ZNF609 ameliorates vascular endothelial dysfunction. Theranostics. 7:2863–2877. 2017. View Article : Google Scholar : PubMed/NCBI

73 

Shan K, Liu C, Liu BH, Chen X, Dong R, Liu X, Zhang YY, Liu B, Zhang SJ, Wang JJ, et al: Circular noncoding RNA HIPK3 mediates retinal vascular dysfunction in diabetes mellitus. Circulation. 136:1629–1642. 2017. View Article : Google Scholar : PubMed/NCBI

74 

Penn JS, Madan A, Caldwell RB, Bartoli M, Caldwell RW and Hartnett ME: Vascular endothelial growth factor in eye disease. Prog Retin Eye Res. 27:331–371. 2008. View Article : Google Scholar : PubMed/NCBI

75 

Krock BL, Skuli N and Simon MC: Hypoxia-induced angiogenesis: Good and evil. Genes Cancer. 2:1117–1133. 2011. View Article : Google Scholar : PubMed/NCBI

76 

Filippi L, Dal Monte M, Casini G, Daniotti M, Sereni F and Bagnoli P: Infantile hemangiomas, retinopathy of prematurity and cancer: A common pathogenetic role of the β-adrenergic system. Med Res Rev. 35:619–652. 2015. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

September 2019
Volume 18 Issue 3

Print ISSN: 1792-0981
Online ISSN:1792-1015

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Zhou, H., Song, H., Wu, Y., Liu, X., Li, J., Zhao, H. ... Xu, H. (2019). Oxygen‑induced circRNA profiles and coregulatory networks in a retinopathy of prematurity mouse model. Experimental and Therapeutic Medicine, 18, 2037-2050. https://doi.org/10.3892/etm.2019.7819
MLA
Zhou, H., Song, H., Wu, Y., Liu, X., Li, J., Zhao, H., Tang, M., Ji, X., Zhang, L., Su, Y., He, Y., Feng, K., Jiao, Y., Xu, H."Oxygen‑induced circRNA profiles and coregulatory networks in a retinopathy of prematurity mouse model". Experimental and Therapeutic Medicine 18.3 (2019): 2037-2050.
Chicago
Zhou, H., Song, H., Wu, Y., Liu, X., Li, J., Zhao, H., Tang, M., Ji, X., Zhang, L., Su, Y., He, Y., Feng, K., Jiao, Y., Xu, H."Oxygen‑induced circRNA profiles and coregulatory networks in a retinopathy of prematurity mouse model". Experimental and Therapeutic Medicine 18, no. 3 (2019): 2037-2050. https://doi.org/10.3892/etm.2019.7819