Open Access

PC‑1 NF suppresses high glucose‑stimulated inflammation and extracellular matrix accumulation in glomerular mesangial cells via the Wnt/β‑catenin signaling

  • Authors:
    • Liangxiang Xiao
    • Yingying Chen
    • Yang Yuan
    • Bo Xu
    • Qing Gao
    • Ping Chen
    • Tianying Zhang
    • Tianjun Guan
  • View Affiliations

  • Published online on: July 19, 2019     https://doi.org/10.3892/etm.2019.7793
  • Pages: 2029-2036
  • Copyright: © Xiao et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Diabetic nephropathy (DN) is the leading cause of end‑stage renal disease worldwide with high morbidity and mortality. Glomerular mesangial cell (MC) proliferation, inflammatory cell infiltration and extracellular matrix (ECM) accumulation are the main pathological characteristics of DN. A previous study revealed that polycystin‑1 N‑terminal fragment (PC‑1 NF) fusion protein could inhibit ECM accumulation in a mesangial proliferative glomerulonephritis model. However, the role of PC‑1 NF fusion protein in DN remains unknown. The results of the present study indicated that PC‑1 NF fusion protein significantly abolished high glucose (HG)‑induced glomerular MC viability over three time points measured (24, 48 and 72 h). In addition, PC‑1 NF suppressed the levels of monocyte chemotactic peptide‑1 and tumor necrosis factor α, as well as the expression of fibronectin and collagen IV, in HG‑stimulated MCs. Furthermore, PC‑1 NF fusion protein efficiently inhibited the activation of Wnt/β‑catenin signaling pathway in HG‑stimulated MCs. Taken together, these data indicated that PC‑1 NF fusion protein inhibited HG‑induced MC proliferation, inflammation, and ECM expression via the modulation of the Wnt signaling pathway. The present study indicated that PC‑1 NF fusion protein may be a potential agent in treating DN.

References

1 

Anders HJ, Huber TB, Isermann B and Schiffer M: CKD in diabetes: Diabetic kidney disease versus nondiabetic kidney disease. Nat Rev Nephrol. 14:361–377. 2018. View Article : Google Scholar : PubMed/NCBI

2 

Kanwar YS, Wada J, Sun L, Xie P, Wallner EI, Chen S, Chugh S and Danesh FR: Diabetic nephropathy: Mechanisms of renal disease progression. Exp Biol Med (Maywood). 233:4–11. 2008. View Article : Google Scholar : PubMed/NCBI

3 

Reidy K, Kang HM, Hostetter T and Susztak K: Molecular mechanisms of diabetic kidney disease. J Clin Invest. 124:2333–2340. 2014. View Article : Google Scholar : PubMed/NCBI

4 

Kato M and Natarajan R: Diabetic nephropathy-emerging epigenetic mechanisms. Nat Rev Nephrol. 10:517–530. 2014. View Article : Google Scholar : PubMed/NCBI

5 

Chen P, Shi Q, Xu X, Wang Y, Chen W and Wang H: Quercetin suppresses NF-κB and MCP-1 expression in a high glucose-induced human mesangial cell proliferation model. Int J Mol Med. 30:119–125. 2012.PubMed/NCBI

6 

Miller CG, Pozzi A, Zent R and Schwarzbauer JE: Effects of high glucose on integrin activity and fibronectin matrix assembly by mesangial cells. Mol Biol Cell. 25:2342–2350. 2014. View Article : Google Scholar : PubMed/NCBI

7 

Guan T, Gao Q, Chen P, Fu L, Zhao H, Zou Z and Mei C: Effects of polycystin-1 N-terminal fragment fusion protein on the proliferation and apoptosis of rat mesangial cells. Mol Med Rep. 10:1626–1634. 2014. View Article : Google Scholar : PubMed/NCBI

8 

Zhao HD, Sun TM, Wang WJ, Mei CL, Xu CG, Bing D, Xue FS, Zhang SZ and Li L: Evaluation of polycystin-1 N-terminal peptide on the proliferation and apoptosis of cystic lining epithilial cells in human ADPKD. Chin J Nephrol. 21:664–668. 2005.

9 

Schmidt-Ott KM and Barasch J: WNT/β-catenin signaling in nephron progenitors and their epithelial progeny. Kidney Int. 74:1004–1008. 2008. View Article : Google Scholar : PubMed/NCBI

10 

Surendran K, Schiavi S and Hruska KA: Wnt-dependent β-catenin signaling is activated after unilateral ureteral obstruction, and recombinant secreted frizzled-related protein 4 alters the progression of renal fibrosis. J Am Soc Nephrol. 16:2373–2384. 2005. View Article : Google Scholar : PubMed/NCBI

11 

Naves MA, Requiao-Moura LR, Soares MF, Silva-Júnior JA, Mastroianni-Kirsztajn G and Teixeira VP: Podocyte Wnt/β-catenin pathway is activated by integrin-linked kinase in clinical and experimental focal segmental glomerulosclerosis. J Nephrol. 25:401–409. 2012. View Article : Google Scholar : PubMed/NCBI

12 

Li Z, Xu J, Xu P, Liu S and Yang Z: Wnt/β-catenin signalling pathway mediates high glucose induced cell injury through activation of TRPC6 in podocytes. Cell Prolif. 46:76–85. 2013. View Article : Google Scholar : PubMed/NCBI

13 

Xiao L, Zhou D, Tan RJ, Fu H, Zhou L, Hou FF and Liu Y: Sustained activation of wnt/β-Catenin signaling drives AKI to CKD progression. J Am Soc Nephrol. 27:1727–1740. 2016. View Article : Google Scholar : PubMed/NCBI

14 

He W, Kang YS, Dai C and Liu Y: Blockade of Wnt/β-catenin signaling by paricalcitol ameliorates proteinuria and kidney injury. J Am Soc Nephrol. 22:90–103. 2011. View Article : Google Scholar : PubMed/NCBI

15 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCt method. Methods. 25:402–408. 2001. View Article : Google Scholar : PubMed/NCBI

16 

Wang JY, Gao YB, Zhang N, Zou DW, Wang P, Zhu ZY, Li JY, Zhou SN, Wang SC, Wang YY and Yang JK: miR-21 overexpression enhances TGF-β1-induced epithelial-to-mesenchymal transition by target smad7 and aggravates renal damage in diabetic nephropathy. Mol Cell Endocrinol. 392:163–172. 2014. View Article : Google Scholar : PubMed/NCBI

17 

Burcelin R, Serino M, Chabo C, Blasco-Baque V and Amar J: Gut microbiota and diabetes: From pathogenesis to therapeutic perspective. Acta Diabetol. 48:257–273. 2011. View Article : Google Scholar : PubMed/NCBI

18 

Alvarez ML, Khosroheidari M, Eddy E and Kiefer J: Role of microRNA 1207-5P and its host gene, the long non-coding RNA Pvt1, as mediators of extracellular matrix accumulation in the kidney: Implications for diabetic nephropathy. PLoS One. 8:e774682013. View Article : Google Scholar : PubMed/NCBI

19 

Li ZY, Zheng Y, Chen Y, Pan M, Zheng SB, Huang W, Zhou ZH and Ye HY: Brazilin ameliorates diabetic nephropathy and inflammation in db/db Mice. Inflammation. 40:1365–1374. 2017. View Article : Google Scholar : PubMed/NCBI

20 

Gurley SB, Ghosh S, Johnson SA, Azushima K, Sakban RB, George SE, Maeda M, Meyer TW and Coffman TM: Inflammation and immunity pathways regulate genetic susceptibility to diabetic nephropathy. Diabetes. 67:2096–2106. 2018. View Article : Google Scholar : PubMed/NCBI

21 

Shaterzadeh-Yazdi H, Noorbakhsh MF, Samarghandian S and Farkhondeh T: An overview on renoprotective effects of Thymoquinone. Kidney Dis (Basel). 4:74–82. 2018. View Article : Google Scholar : PubMed/NCBI

22 

Chen C, Gong W, Li C, Xiong F, Wang S, Huang J, Wang Y, Chen Z, Chen Q and Liu P: Sphingosine kinase 1 mediates AGEs-induced fibronectin upregulation in diabetic nephropathy. Oncotarget. 8:78660–78676. 2017.PubMed/NCBI

23 

Xie X, Chen Q and Tao J: Astaxanthin promotes Nrf2/ARE signaling to inhibit HG-induced renal fibrosis in GMCs. Mar Drugs. 16(pii): E1172018.PubMed/NCBI

24 

Wang J, Duan L, Guo T, Gao Y, Tian L, Liu J, Wang S and Yang J: Downregulation of miR-30c promotes renal fibrosis by target CTGF in diabetic nephropathy. J Diabetes Complications. 30:406–414. 2016. View Article : Google Scholar : PubMed/NCBI

25 

Guo Q, Zhong W, Duan A, Sun G, Cui W, Zhuang X and Liu L: Protective or deleterious role of Wnt/beta-catenin signaling in diabetic nephropathy: An unresolved issue. Pharmacol Res. 144:151–157. 2019. View Article : Google Scholar : PubMed/NCBI

26 

Zhang L, Shen ZY, Wang K, Li W, Shi JM, Osoro EK, Ullah N, Zhou Y and Ji SR: C-reactive protein exacerbates epithelial-mesenchymal transition through Wnt/β-catenin and ERK signaling in streptozocin-induced diabetic nephropathy. FASEB J. 33:6551–6563. 2019. View Article : Google Scholar : PubMed/NCBI

27 

Ali H, Zmuda JM, Cvejkus RK, Kershaw EE, Kuipers AL, Oczypok EA, Wheeler V, Bunker CH and Miljkovic I: Wnt pathway inhibitor DKK1: A potential novel biomarker for adiposity. J Endocr Soc. 3:488–495. 2019. View Article : Google Scholar : PubMed/NCBI

28 

Lai M, Song X, Pluznick JL, Di Giovanni V, Merrick DM, Rosenblum ND, Chauvet V, Gottardi CJ, Pei Y and Caplan MJ: Polycystin-l C terminal tail associates with β-catenin and inhibits canonical Wnt signaling. Hum Mol Genet. 17:3105–3117. 2008. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

September 2019
Volume 18 Issue 3

Print ISSN: 1792-0981
Online ISSN:1792-1015

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Xiao, L., Chen, Y., Yuan, Y., Xu, B., Gao, Q., Chen, P. ... Guan, T. (2019). PC‑1 NF suppresses high glucose‑stimulated inflammation and extracellular matrix accumulation in glomerular mesangial cells via the Wnt/β‑catenin signaling. Experimental and Therapeutic Medicine, 18, 2029-2036. https://doi.org/10.3892/etm.2019.7793
MLA
Xiao, L., Chen, Y., Yuan, Y., Xu, B., Gao, Q., Chen, P., Zhang, T., Guan, T."PC‑1 NF suppresses high glucose‑stimulated inflammation and extracellular matrix accumulation in glomerular mesangial cells via the Wnt/β‑catenin signaling". Experimental and Therapeutic Medicine 18.3 (2019): 2029-2036.
Chicago
Xiao, L., Chen, Y., Yuan, Y., Xu, B., Gao, Q., Chen, P., Zhang, T., Guan, T."PC‑1 NF suppresses high glucose‑stimulated inflammation and extracellular matrix accumulation in glomerular mesangial cells via the Wnt/β‑catenin signaling". Experimental and Therapeutic Medicine 18, no. 3 (2019): 2029-2036. https://doi.org/10.3892/etm.2019.7793