Open Access

The effect of bone marrow mesenchymal stem cell and nano‑hydroxyapatite/collagen I/poly‑L‑lactic acid scaffold implantation on the treatment of avascular necrosis of the femoral head in rabbits

  • Authors:
    • Le Wang
    • Leixin Xu
    • Changliang Peng
    • Guoxin Teng
    • Yu Wang
    • Xiaoshuai Xie
    • Dongjin Wu
  • View Affiliations

  • Published online on: July 23, 2019     https://doi.org/10.3892/etm.2019.7800
  • Pages: 2021-2028
  • Copyright: © Wang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

For avascular necrosis of the femoral head (ANFH), repair and regeneration are difficult because of the edema and high pressure caused by continuous ischemia and hypoxia. Core decompression (CD) is a classic method for treating early ANFH before the collapse of the femoral head; however, its effect is still controversial. To improve the therapeutic effect of CD on ANFH, a novel tissue‑engineered bone (TEB) was constructed by combining bone marrow mesenchymal stem cells (BMSCs) with nano‑hydroxyapatite/collagen I/poly‑L‑lactic acid (nHAC/PLA) scaffolds and implanting the TEB into the bone tunnel of CD. Cell attachment was observed by scanning electron microscopy and hematoxylin and eosin staining. The authors' previous studies confirmed that nHAC/PLA is an excellent scaffold material with favorable biocompatibility and no cytotoxicity. A total of 24 New Zealand rabbits with ANFH were randomly divided into three groups, as follows: Group A (n=8), pure CD; group B (n=8), CD+nHAC/PLA; and group C (n=8), CD+BMSCs‑nHAC/PLA. The favorable effect of BMSCs‑nHAC/PLA on angiogenesis and bone formation in necrotic areas was further evaluated via radiographic and histological analyses. Computerized tomography (CT) scanning and H&E staining showed more capillaries and new osteoid tissue in group C compared with in groups B and A. Micro‑CT showed that the new bone coverage rate and implanted material degradation degree were each increased in group C compared with in group B. These results indicate that BMSCs‑nHAC/PLA scaffolds may improve the curative effect of CD and provide a strategy for treating ANFH.

Related Articles

Journal Cover

September 2019
Volume 18 Issue 3

Print ISSN: 1792-0981
Online ISSN:1792-1015

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Wang, L., Xu, L., Peng, C., Teng, G., Wang, Y., Xie, X., & Wu, D. (2019). The effect of bone marrow mesenchymal stem cell and nano‑hydroxyapatite/collagen I/poly‑L‑lactic acid scaffold implantation on the treatment of avascular necrosis of the femoral head in rabbits. Experimental and Therapeutic Medicine, 18, 2021-2028. https://doi.org/10.3892/etm.2019.7800
MLA
Wang, L., Xu, L., Peng, C., Teng, G., Wang, Y., Xie, X., Wu, D."The effect of bone marrow mesenchymal stem cell and nano‑hydroxyapatite/collagen I/poly‑L‑lactic acid scaffold implantation on the treatment of avascular necrosis of the femoral head in rabbits". Experimental and Therapeutic Medicine 18.3 (2019): 2021-2028.
Chicago
Wang, L., Xu, L., Peng, C., Teng, G., Wang, Y., Xie, X., Wu, D."The effect of bone marrow mesenchymal stem cell and nano‑hydroxyapatite/collagen I/poly‑L‑lactic acid scaffold implantation on the treatment of avascular necrosis of the femoral head in rabbits". Experimental and Therapeutic Medicine 18, no. 3 (2019): 2021-2028. https://doi.org/10.3892/etm.2019.7800