Open Access

Sodium ferulate attenuates high‑glucose‑induced oxidative injury in HT22 hippocampal cells

  • Authors:
    • Jiangpei Zhao
    • Lerong Liu
    • Lingxiao Zhang
    • Jing Lv
    • Xueli Guo
    • Xia Li
    • Tongfeng Zhao
  • View Affiliations

  • Published online on: July 26, 2019     https://doi.org/10.3892/etm.2019.7822
  • Pages: 2015-2020
  • Copyright: © Zhao et al. This is an open access article distributed under the terms of Creative Commons Attribution License [CC BY_NC 4.0].

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

The aim of the present study was to investigate the protective effects of sodium ferulate (SF) on HT22 hippocampal cells under a high glucose concentration. Cells were cultured in normal glucose (25 mM D‑glucose) or high glucose (50 mM D‑glucose) with various concentrations of SF (50, 100, 250 or 500 µM) for 0, 48 and 72 h. Cell viability was tested using a Cell Counting Kit‑8 assay. Reactive oxygen species (ROS) production was detected using flow cytometry. The expression of nuclear factor erythroid 2‑related factor 2 (Nrf2), heme oxygenase‑1 (HO‑1) and nuclear factor‑κB (NF‑κB) at the mRNA and protein levels were detected using a reverse transcription‑quantitative polymerase chain reaction analysis and western blotting. HT22 hippocampal cell viability was revealed to be substantially decreased following culturing in high glucose medium (50 mM) for 48 and 72 h. The addition of 100 µM SF abrogated this high‑glucose‑induced toxicity, but higher concentrations of SF (250 and 500 µM) were harmful to the cells. Furthermore, a high glucose concentration increased the generation of ROS, downregulated the expression of Nrf2/HO‑1 and upregulated the expression of NF‑κB subsequent to culturing for 72 h, whereas the addition of the appropriate concentration of SF attenuated these effects. To the best of our knowledge, the present study is the first to report such results and provide evidence that SF protects HT22 cells from high glucose‑induced toxicity by activating the Nrf2/HO‑1 pathway and inhibiting the expression of NF‑κB, which may be of therapeutic value in diabetic encephalopathy.

References

1 

Xu WL, von Strauss E, Qiu CX, Winblad B and Fratiglioni L: Uncontrolled diabetes increases the risk of Alzheimer's disease: A population-based cohort study. Diabetologia. 52:1031–1039. 2009. View Article : Google Scholar : PubMed/NCBI

2 

van Harten B, Oosterman J, Muslimovic D, van Loon BJ, Scheltens P and Weinstein HC: Cognitive impairment and MRI correlates in the elderly patients with type 2 diabetes mellitus. Age Ageing. 36:164–170. 2007. View Article : Google Scholar : PubMed/NCBI

3 

Li ZG, Zhang W and Sima AA: Alzheimer-like changes in rat models of spontaneous diabetes. Diabetes. 56:1817–1824. 2007. View Article : Google Scholar : PubMed/NCBI

4 

Alvarez EO, Beauquis J, Revsin Y, Banzan AM, Roig P, De Nicola AF and Saravia F: Cognitive dysfunction and hippocampal changes in experimental type 1 diabetes. Behav Brain Res. 198:224–230. 2009. View Article : Google Scholar : PubMed/NCBI

5 

Sima AA: Encephalopathies: The emerging diabetic complications. Acta Diabetol. 47:279–293. 2010. View Article : Google Scholar : PubMed/NCBI

6 

Russell JW, Golovoy D, Vincent AM, Mahendru P, Olzmann JA, Mentzer A and Feldman EL: High glucose-induced oxidative stress and mitochondrial dysfunction in neurons. FASEB J. 16:1738–1748. 2002. View Article : Google Scholar : PubMed/NCBI

7 

Kamboj SS and Sandhir R: Protective effect of N-acetylcysteine supplementation on mitochondrial oxidative stress and mitochondrial enzymes in cerebral cortex of streptozotocin-treated diabetic rats. Mitochondrion. 11:214–222. 2011. View Article : Google Scholar : PubMed/NCBI

8 

Karkkainen V, Pomeshchik Y Savchenko E, Dhungana H, Kurronen A, Lehtonen S, Naumenko N, Tavi P, Levonen AL, Yamamoto M, et al: Nrf2 regulates neurogenesis and protects neural progenitor cells against Aβ toxicity. Stem Cells. 32:1904–1916. 2014. View Article : Google Scholar : PubMed/NCBI

9 

Baird L and Dinkova-Kostova AT: The cytoprotective role of the Keap1-Nrf2 pathway. Arch Toxicol. 85:241–272. 2011. View Article : Google Scholar : PubMed/NCBI

10 

Rojo AI, Pajares M, Rada P, Nuñez A, Nevado-Holgado AJ, Killik R, Van Leuven F, Ribe E, Lovestone S, Yamamoto M and Cuadrado A: NRF2 deficiency replicates transcriptomic changes in Alzheimer's patients and worsens APP and TAU pathology. Redox Biol. 13:444–451. 2017. View Article : Google Scholar : PubMed/NCBI

11 

Kanninen K, Malm TM, Jyrkkänen HK, Goldsteins G, Keksa-Goldsteine V, Tanila H, Yamamoto M, Yia-Herttuala S, Levonen AL and Koistinaho J: Nuclear factor erythroid 2-related factor 2 protects against beta amyloid. Mol Cell Neurosci. 39:302–313. 2008. View Article : Google Scholar : PubMed/NCBI

12 

Wang G, Fang H, Zhen Y, Xu G, Tian J, Zhang Y, Zhang D, Zhang G, Xu J, Zhang Z, et al: Sulforaphane prevents neuronal apoptosis and memory impairment in diabetic rats. Cell Physiol Biochem. 39:901–907. 2016. View Article : Google Scholar : PubMed/NCBI

13 

Pu D, Zhao Y, Chen J, Sun Y, Lv A, Zhu S, Luo C, Zhao K and Xiao Q: Protective effects of sulforaphane on cognitive impairments and AD-like lesions in diabetic mice are associated with the upregulation of Nrf2 transcription activity. Neuroscience. 381:35–45. 2018. View Article : Google Scholar : PubMed/NCBI

14 

Ren Z, Zhang R, Li Y, Li Y, Yang Z and Yang H: Ferulic acid exerts neuroprotective effects against cerebral ischemia/reperfusion-induced injury via antioxidant and anti-apoptotic mechanisms in vitro and in vivo. Int J Mol Med. 40:1444–1456. 2017. View Article : Google Scholar : PubMed/NCBI

15 

Mancuso C and Santangelo R: Ferulic acid: Pharmacological and toxicological aspects. Food Chem Toxicol. 65:185–195. 2014. View Article : Google Scholar : PubMed/NCBI

16 

Xu X, Xiao H, Zhao J and Zhao T: Cardioprotective effect of sodium ferulate in diabetic rats. Int J Med Sci. 9:291–300. 2012. View Article : Google Scholar : PubMed/NCBI

17 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001. View Article : Google Scholar : PubMed/NCBI

18 

Ward R and Ergul A: Relationship of endothelin-1 and NLRP3 inflammasome activation in HT22 hippocampal cells in diabetes. Life Sci. 159:97–103. 2016. View Article : Google Scholar : PubMed/NCBI

19 

Rolo AP and Palmeira CM: Diabetes and mitochondrial function: Role of hyperglycemia and oxidative stress. Toxicol Appl Pharm. 212:167–178. 2006. View Article : Google Scholar

20 

Kikugawa M, Tsutsuki H, Ida T, Nakajima H, Ihara H and Sakamoto T: Water-soluble ferulic acid derivatives improve amyloid-beta-induced neuronal cell death and dysmnesia through inhibition of amyloid-β aggregation. Biosci Biotechnol Biochem. 80:547–553. 2016. View Article : Google Scholar : PubMed/NCBI

21 

Kanski J, Aksenova M, Stoyanova A and Butterfield DA: Ferulic acid antioxidant protection against hydroxyl and peroxyl radical oxidation in synaptosomal and neuronal cell culture systems in vitro: Structure-activity studies. J Nutr Biochem. 13:273–281. 2002. View Article : Google Scholar : PubMed/NCBI

22 

Jiang X, Lin Q, He G, Hou X, Shan Z and Du Y: Therapeutic effect of QQL prescription on type 2 diabetic rats. Chin J Pathophysiol. 33:1794–1800. 2017.

23 

de Vries HE, Witte M, Hondius D, Rozemuller AJ, Drukarch B, Hoozemans J and van Horssen J: Nrf2-induced antioxidant protection: A promising target to counteract ROS-mediated damage in neurodegenerative disease? Free Radic Biol Med. 45:1375–1383. 2008. View Article : Google Scholar : PubMed/NCBI

24 

Ma ZC, Hong Q, Wang YG, Liang QD, Tan HL, Xiao CR, Tang XL, Shao S, Zhou SS and Gao Y: Ferulic acid induces heme oxygenase-1 via activation of ERK and Nrf2. Drug Discov Ther. 5:299–305. 2011. View Article : Google Scholar : PubMed/NCBI

25 

Catino S, Paciello F, Miceli F, Rolesi R, Troiani D, Calabrese V, Santangelo R and Mancuso C: Ferulic acid regulates the Nrf2/Heme oxygenase-1 system and counteracts trimethyltin-induced neuronal damage in the human neuroblastoma cell line SH-SY5Y. Front Pharmacol. 6:3052015.PubMed/NCBI

26 

Scapagnini G, Butterfield DA, Colombrita C, Sultana R, Pascale A and Calabrese V: Ethyl ferulate, a lipophilic polyphenol, induces HO-1 and protects rat neurons against oxidative stress. Antioxid Redox Signal. 6:811–818. 2004. View Article : Google Scholar : PubMed/NCBI

27 

Mezzasoma L, Antognelli C and Talesa VN: A novel role for brain natriuretic peptide: Inhibition of IL-1β secretion via downregulation of NF-kB/Erk 1/2 and NALP3/ASC/Caspase-1 activation in human THP-1 monocyte. Mediators Inflamm. 2017:58583152017. View Article : Google Scholar : PubMed/NCBI

28 

Wang B, Miao Y, Zhao Z and Zhong Y: Inflammatory macrophages promotes development of diabetic encephalopathy. Cell Physiol Biochem. 36:1142–1150. 2015. View Article : Google Scholar : PubMed/NCBI

29 

Aragno M, Mastrocola R, Brignardello E, Catalano M, Robino G, Manti R, Parola M, Danni O and Boccuzzi G: Dehydroepiandrosterone modulates nuclear factor-kappaB activation in hippocampus of diabetic rats. Endocrinology. 143:3250–3258. 2002. View Article : Google Scholar : PubMed/NCBI

30 

Zhang H, Li Y and An Y: Effect of sodium ferulate on NF-κB P65 and Par-4 expression of apoptotic hippocampal neurons induced by SNP. Chin J Gerontol. 28:1361–1364. 2008.(In Chinese).

31 

Jin Y, Yan EZ, Li XM, Fan Y, Zhao YJ, Liu Z and Liu WZ: Neuroprotective effect of sodium ferulate and signal transduction mechanisms in the aged rat hippocampus. Acta Pharmacol Sin. 29:1399–1408. 2008. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

September 2019
Volume 18 Issue 3

Print ISSN: 1792-0981
Online ISSN:1792-1015

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Zhao, J., Liu, L., Zhang, L., Lv, J., Guo, X., Li, X., & Zhao, T. (2019). Sodium ferulate attenuates high‑glucose‑induced oxidative injury in HT22 hippocampal cells. Experimental and Therapeutic Medicine, 18, 2015-2020. https://doi.org/10.3892/etm.2019.7822
MLA
Zhao, J., Liu, L., Zhang, L., Lv, J., Guo, X., Li, X., Zhao, T."Sodium ferulate attenuates high‑glucose‑induced oxidative injury in HT22 hippocampal cells". Experimental and Therapeutic Medicine 18.3 (2019): 2015-2020.
Chicago
Zhao, J., Liu, L., Zhang, L., Lv, J., Guo, X., Li, X., Zhao, T."Sodium ferulate attenuates high‑glucose‑induced oxidative injury in HT22 hippocampal cells". Experimental and Therapeutic Medicine 18, no. 3 (2019): 2015-2020. https://doi.org/10.3892/etm.2019.7822