Wnt3a downregulates thyroid hormone‑induced osteocalcin expression in osteoblasts

  • Authors:
    • Kazuhiko Fujita
    • Takanobu Otsuka
    • Tetsu Kawabata
    • Go Sakai
    • Woo Kim
    • Rie Matsushima‑Nishiwaki
    • Osamu Kozawa
    • Haruhiko Tokuda
  • View Affiliations

  • Published online on: July 10, 2019     https://doi.org/10.3892/etm.2019.7764
  • Pages: 1921-1927
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Wnt3a is a crucial modulator of bone metabolism through the canonical Wnt/β‑catenin signaling pathway in bone‑forming osteoblasts. We previously reported that the expression of osteocalcin is stimulated by triiodothyronine (T3) at least in part through the activation of p38 mitogen‑activated protein (MAP) kinase but not p44/p42 MAP kinase in osteoblast‑like MC3T3‑E1 cells. In the present study, we investigated the effect of Wnt3a on the T3‑induced osteocalcin expression in these cells. Wnt3a suppressed the release of osteocalcin induced by T3. The inhibitory effect of Wnt3a was dose‑dependent between 0.3 and 30 ng/ml. SB216763, an inhibitor of glycogen synthase kinase‑3β, that reduces the phosphorylation of β‑catenin, inhibited the T3‑induced osteocalcin release. Wnt3a, as well as SB216763, reduced the expression of osteocalcin mRNA induced by T3. The transcriptional activity induced by T3, assessed by a luciferase activity, was also suppressed by both Wnt3a and SB216763. In contrast, Wnt3a did not markedly affect the T3‑stimulated phosphorylation of p38 MAP kinase. These results suggested that Wnt3a downregulates the T3‑stimulated osteocalcin expression in MC3T3‑E1 cells, and the suppressive effect of Wnt3a is independent of p38 MAP kinase.

References

1 

Karsenty G and Wagner EF: Reaching a genetic and molecular understanding of skeletal development. Dev Cell. 2:389–406. 2002. View Article : Google Scholar : PubMed/NCBI

2 

Komori T: Signaling networks in RUNX2-dependent bone development. J Cell Biochem. 112:750–755. 2011. View Article : Google Scholar : PubMed/NCBI

3 

Moon RT, Bowerman B, Boutros M and Perrimon N: The promise and perils of Wnt signaling through beta-catenin. Science. 296:1644–1646. 2002. View Article : Google Scholar : PubMed/NCBI

4 

Tokuda H, Adachi S, Matsushima-Nishiwaki R, Kato K, Natsume H, Otsuka T and Kozawa O: Enhancement of basic fibroblast growth factor-stimulated VEGF synthesis by Wnt3a in osteoblasts. Int J Mol Med. 27:859–864. 2011. View Article : Google Scholar : PubMed/NCBI

5 

Natsume H, Tokuda H, Matsushima-Nishiwaki R, Kato K, Yamakawa K, Otsuka T and Kozawa O: Wnt3a upregulates transforming growth factor-β-stimulated VEGF synthesis in osteoblasts. Cell Biochem Funct. 29:373–377. 2011. View Article : Google Scholar

6 

Kondo A, Tokuda H, Mizutani J, Matsushima-Nishiwaki R, Kozawa O and Otsuka T: Wnt3a upregulates prostaglandin F2α-stimulated vascular endothelial growth factor synthesis in osteoblasts. Mol Med Rep. 6:421–425. 2012. View Article : Google Scholar : PubMed/NCBI

7 

Natsume H, Tokuda H, Adachi S, Matsushima-Nishiwaki R, Kato K, Minamitani C, Otsuka T and Kozawa O: Wnt3a regulates tumor necrosis factor-α-stimulated interleukin-6 release in osteoblasts. Mol Cell Endocrinol. 331:66–72. 2011. View Article : Google Scholar : PubMed/NCBI

8 

Hauschka PV, Lian JB, Cole DE and Gundberg CM: Osteocalcin and matrix Gla protein: Vitamin K-dependent proteins in bone. Physiol Rev. 69:990–1047. 1989. View Article : Google Scholar : PubMed/NCBI

9 

Ducy P, Desbois C, Boyce B, Pinero G, Story B, Dunstan C, Smith E, Bonadio J, Goldstein S, Gundberg C, et al: Increased bone formation in osteocalcin-deficient mice. Nature. 382:448–452. 1996. View Article : Google Scholar : PubMed/NCBI

10 

Karsenty G and Ferron M: The contribution of bone to whole-organism physiology. Nature. 481:314–320. 2012. View Article : Google Scholar : PubMed/NCBI

11 

Gogakos AI, Duncan Bassett JH and Williams GR: Thyroid and bone. Arch Biochem Biophys. 503:129–136. 2010. View Article : Google Scholar : PubMed/NCBI

12 

Vestergaard P and Mosekilde L: Hyperthyroidism, bone mineral, and fracture risk-a meta-analysis. Thyroid. 13:585–593. 2003. View Article : Google Scholar : PubMed/NCBI

13 

Cheng SY, Leonard JL and Davis PJ: Molecular aspects of thyroid hormone actions. Endocr Rev. 31:139–170. 2010. View Article : Google Scholar : PubMed/NCBI

14 

Mullur R, Liu YY and Brent GA: Thyroid hormone regulation of metabolism. Physiol Rev. 94:355–382. 2014. View Article : Google Scholar : PubMed/NCBI

15 

Kasono K, Sato K, Han DC, Fujii Y, Tsushima T and Shizume K: Stimulation of alkaline phosphatase activity by thyroid hormone in mouse osteoblast-like cells (MC3T3-E1): A possible mechanism of hyperalkaline phosphatasia in hyperthyroidism. Bone Miner. 4:355–363. 1988.PubMed/NCBI

16 

Ishisaki A, Tokuda H, Yoshida M, Hirade K, Kunieda K, Hatakeyama D, Shibata T and Kozawa O: Activation of p38 mitogen-activated protein kinase mediates thyroid hormone-stimulated osteocalcin synthesis in osteoblasts. Mol Cell Endocrinol. 214:189–195. 2004. View Article : Google Scholar : PubMed/NCBI

17 

Kanno Y, Ishisaki A, Yoshida M, Nakajima K, Tokuda H, Numata O and Kozawa O: Adenylyl cyclase-cAMP system inhibits thyroid hormone-stimulated osteocalcin synthesis in osteoblasts. Mol Cell Endocrinol. 229:75–82. 2005. View Article : Google Scholar : PubMed/NCBI

18 

Sudo H, Kodama HA, Amagai Y, Yamamoto S and Kasai S: In vitro differentiation and calcification in a new clonal osteogenic cell line derived from newborn mouse calvaria. J Cell Biol. 96:191–198. 1983. View Article : Google Scholar : PubMed/NCBI

19 

Kozawa O, Tokuda H, Miwa M, Kotoyori J and Oiso Y: Cross-talk regulation between cyclic AMP production and phosphoinositide hydrolysis induced by prostaglandin E2 in osteoblast-like cells. Exp Cell Res. 198:130–134. 1992. View Article : Google Scholar : PubMed/NCBI

20 

Zhang W, Yang N and Shi XM: Regulation of mesenchymal stem cell osteogenic differentiation by glucocorticoid-induced leucine zipper (GILZ). J Biol Chem. 283:4723–4729. 2008. View Article : Google Scholar : PubMed/NCBI

21 

Simpson DA, Feeney S, Boyle C and Stitt AW: Retinal VEGF mRNA measured by SYBR green I fluorescence: A versatile approach to quantitative PCR. Mol Vis. 6:178–183. 2000.PubMed/NCBI

22 

Kato K, Ito H, Hasegawa K, Inaguma Y, Kozawa O and Asano T: Modulation of the stress-induced synthesis of hsp27 and alpha B-crystallin by cyclic AMP in C6 rat glioma cells. J Neurochem. 66:946–950. 1996. View Article : Google Scholar : PubMed/NCBI

23 

Laemmli UK: Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 227:680–685. 1970. View Article : Google Scholar : PubMed/NCBI

24 

Coghlan MP, Culbert AA, Cross DA, Corcoran SL, Yates JW, Pearce NJ, Rausch OL, Murphy GJ, Carter PS, Roxbee Cox L, et al: Selective small molecule inhibitors of glycogen synthase kinase-3 modulate glycogen metabolism and gene transcription. Chem Biol. 7:793–803. 2000. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

September 2019
Volume 18 Issue 3

Print ISSN: 1792-0981
Online ISSN:1792-1015

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Fujita, K., Otsuka, T., Kawabata, T., Sakai, G., Kim, W., Matsushima‑Nishiwaki, R. ... Tokuda, H. (2019). Wnt3a downregulates thyroid hormone‑induced osteocalcin expression in osteoblasts. Experimental and Therapeutic Medicine, 18, 1921-1927. https://doi.org/10.3892/etm.2019.7764
MLA
Fujita, K., Otsuka, T., Kawabata, T., Sakai, G., Kim, W., Matsushima‑Nishiwaki, R., Kozawa, O., Tokuda, H."Wnt3a downregulates thyroid hormone‑induced osteocalcin expression in osteoblasts". Experimental and Therapeutic Medicine 18.3 (2019): 1921-1927.
Chicago
Fujita, K., Otsuka, T., Kawabata, T., Sakai, G., Kim, W., Matsushima‑Nishiwaki, R., Kozawa, O., Tokuda, H."Wnt3a downregulates thyroid hormone‑induced osteocalcin expression in osteoblasts". Experimental and Therapeutic Medicine 18, no. 3 (2019): 1921-1927. https://doi.org/10.3892/etm.2019.7764