Isopsoralen ameliorates H2O2‑induced damage in osteoblasts via activating the Wnt/β‑catenin pathway

  • Authors:
    • Yu‑Peng Li
    • Bin Wu
    • Jie Liang
    • Fei Li
  • View Affiliations

  • Published online on: July 5, 2019     https://doi.org/10.3892/etm.2019.7741
  • Pages: 1899-1906
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Osteoporosis is a disease with a worldwide prevalence that involves a severe loss of bone mineral density and decreased microarchitecture, which increases the risk of bone fracture. The present study evaluated the effects of isopsoralen on osteoblastic OB‑6 cells following hydrogen peroxide (H2O2)‑induced damage and investigated the molecular mechanisms involved in this process. For in vitro experiments, OB‑6 osteoblasts were treated with H2O2 or H2O2 + isopsoralen then the cell viability, apoptosis, reactive oxygen species (ROS) production and calcium accumulation were determined. Results demonstrated that treatment with H2O2 reduced cell viability, runt‑related transcription factor 2 (RUNX2) and osteocalcin (OCN) expression levels, and calcium deposition, whilst markedly increasing cell apoptosis and ROS production. However, isopsoralen (1 µM) provided significant protection against H2O2‑induced alterations in osteoblasts. In addition, isopsoralen effectively upregulated protein expression of tankyrase and β‑catenin which are the main transductors of the Wnt/β‑catenin pathway. Of note, the protective effects of isopsoralen against H2O2‑induced damage were attenuated in OB‑6 cells treated with tankyrase inhibitor XAV‑939. In conclusion, the present findings provided evidence that isopsoralen attenuated oxidative stress‑induced injury in osteoblasts via the Wnt/β‑catenin signaling pathway.

References

1 

Rachner TD, Khosla S and Hofbauer LC: Osteoporosis: Now and the future. Lancet. 377:1276–1287. 2011. View Article : Google Scholar : PubMed/NCBI

2 

Bliuc D, Nguyen ND, Milch VE, Nguyen TV, Eisman JA and Center JR: Mortality risk associated with low-trauma osteoporotic fracture and subsequent fracture in men and women. JAMA. 301:513–521. 2009. View Article : Google Scholar : PubMed/NCBI

3 

Dueregger A, Heidegger I, Ofer P, Perktold B, Ramoner R, Klocker H and Eder IE: The use of dietary supplements to alleviate androgen deprivation therapy side effects during prostate cancer treatment. Nutrients. 6:4491–4519. 2014. View Article : Google Scholar : PubMed/NCBI

4 

Tuck SP and Datta HK: Osteoporosis in the aging male: Treatment options. Clin Interv Aging. 2:521–536. 2007. View Article : Google Scholar : PubMed/NCBI

5 

Khosla S: Update in male osteoporosis. J Clin Endocrinol Metab. 95:3–10. 2010. View Article : Google Scholar : PubMed/NCBI

6 

Wang ZQ, Li JL, Sun YL, Yao M, Gao J, Yang Z, Shi Q, Cui XJ and Wang YJ: Chinese herbal medicine for osteoporosis: A systematic review of randomized controlled trails. Evid. Based. Complement. Alternat. Med. 2013:3562602013.

7 

Uebelhart D, Frey D, Frey-Rindova P, Goerres G and Michel BA: Therapy of osteoporosis: Bisphosphonates, SERM's, teriparatide and strontium. Z Rheumatol. 62:512–517. 2003.(In German). View Article : Google Scholar : PubMed/NCBI

8 

Wang Y, Hong C, Zhou C, Xu D and Qu HB: Screening antitumor compounds Psoralen and Isopsoralen from Psoralea coryl folia L. Seeds. Evid Based Complement Alternat Med. 2011:3630522011. View Article : Google Scholar : PubMed/NCBI

9 

Wu CR, Chang CL, Hsieh PY, Lin LW and Ching H: Psoralen in isopsoralen, two coumarins of Psoraleae Fructus, can alleviate scopolamine-induced amnesia in rats. Planta Med. 73:275–278. 2007. View Article : Google Scholar : PubMed/NCBI

10 

Yang Z, Huang JH, Liu SF, Zhao YJ, Shen ZY, Wang YJ and Bian Q: The osteoprotective effect of psoralen in ovariectomy-induced osteoporotic rats via stimulating the osteoblastic differentiation from bone mesenchymal stem cells. Menopause. 19:1156–1164. 2012. View Article : Google Scholar : PubMed/NCBI

11 

Tang DZ, Yang F, Yang Z, Huang J, Shi Q, Chen D and Wang YJ: Psoralen stimulates osteoblast differentiation through activation of BMP signaling. Biochem Biophys Res Commun. 405:256–261. 2011. View Article : Google Scholar : PubMed/NCBI

12 

Tsai MH, Huang GS, Hung YC, Bin L, Liao LT and Lin LW: Psoralea corylifolia extract ameliorates experimental osteoporosis in ovariectomized rats. Am J Chin Med. 35:669–680. 2007. View Article : Google Scholar : PubMed/NCBI

13 

Wong RW and Rabie AB: Effect of psoralen on bone formation. J Orthop Res. 29:158–164. 2011. View Article : Google Scholar : PubMed/NCBI

14 

Yuan X, Bi Y, Yan Z, Pu W, Li Y and Zhou K: Psoralen and Isopsoralen ameliorate sex hormone deficiency-induced osteoporosis in female and male mice. Biomed Res Int. 2016:68694522016. View Article : Google Scholar : PubMed/NCBI

15 

Lu H, Zhang L, Liu D, Tang P and Song F: Isolation and purification of psoralen and isopsoralen and their efficacy and safety in the treatment of osteosarcoma in nude rats. Afr Health Sci. 14:641–647. 2014. View Article : Google Scholar : PubMed/NCBI

16 

Ming L, Ge B, Chen K, Ma H and Zhai Y: Effects of isopsoralen on bone marrow stromal stem cells differentiate and proliferate in vitro. Zhongguo Zhong Yao Za Zhi. 36:2124–2128. 2011.(In Chinese). PubMed/NCBI

17 

Neben CL and Merrill AE: Signaling pathways in craniofacial development: Insights from rare skeletal disorders. Curr Top Dev Biol. 115:493–542. 2015. View Article : Google Scholar : PubMed/NCBI

18 

Alfaro MP, Pagni M, Vincent A, Atkinson J, Hill MF, Cates J, Davidson JM, Rottman J, Lee E and Young PP: The Wnt modulator sFRP2 enhances mesenchymal stem cell engraftment, granulation tissue formation and myocardial repair. Proc Natl Acad Sci USA. 105:18366–18371. 2008. View Article : Google Scholar : PubMed/NCBI

19 

Lorenzon A, Calore M, Poloni G, De Windt LJ, Braghetta P and Rampazzo A: Wnt/β-catenin pathway in arrhythmogenic cardiomyopathy. Oncotarget. 8:60640–60655. 2017. View Article : Google Scholar : PubMed/NCBI

20 

Burgers TA and Williams BO: Regulation of Wnt/β-catenin signaling within and from osteocytes. Bone. 54:244–249. 2013. View Article : Google Scholar : PubMed/NCBI

21 

Duan P and Bonewald LF: The role of the wnt/β-catenin signaling pathway in formation and maintenance of bone and teeth. Int J Biochem Cell Biol. 77:23–29. 2016. View Article : Google Scholar : PubMed/NCBI

22 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001. View Article : Google Scholar : PubMed/NCBI

23 

Skemiene KJ and Liobikas V: Borutaite. Anthocyanins as substrates for mitochondrial complex I- protective effect against heart ischemic injury. FEBS J. 282:963–971. 2015. View Article : Google Scholar : PubMed/NCBI

24 

Schurman L, Bagur A, Claus-Hermberg H, Messina OD, Negri AL, Sánchez A, González C, Diehl M, Rey P, Gamba J, et al: Guidelines for the diagnosis, prevention and treatment of osteoporosis, 2012. Medicina (B Aires). 73:55–74. 2013.(In Spanish). PubMed/NCBI

25 

Himburg HA, Muramoto GG, Daher P, Meadows SK, Russell JL, Doan P, Chi JT, Salter AB, Lento WE, Reya T, et al: Pleiotrophin regulates the expansion and regeneration of hematopoietic stem cells. Nat Med. 16:475–482. 2010. View Article : Google Scholar : PubMed/NCBI

26 

Guo S, Xie Y, Fan JB, Ji F, Wang S and Fei H: A-Melanocyte stimulating hormone attenuates dexamethasone-induced osteoblast damages through activating melanocortin receptor 4-SphK1 signaling. Biochem Biophys Res Commun. 469:281–287. 2016. View Article : Google Scholar : PubMed/NCBI

27 

Liu H, Bian W, Liu S and Huang K: Selenium protects bone marrow stromal cells against hydrogen peroxide-induced inhibition of osteoblastic differentiation by suppressing oxidative stress and ERK signaling pathway. Biol Trace Elem Res. 150:441–450. 2012. View Article : Google Scholar : PubMed/NCBI

28 

Yang Y, Su Y, Wang D, Chen Y, Wu T, Li G, Sun X and Cui L: Tanshinol attenuates the deleterious effects of oxidative stress on osteoblastic differentiation via Wnt/FoxO3a signaling. Oxid Med Cell Longev. 2013:3518952013. View Article : Google Scholar : PubMed/NCBI

29 

Liang D, Xiang L, Yang M, Zhang X, Guo B, Chen Y, Yang L and Cao J: ZnT7 can protect MC3T3-E1 cells from oxidative stress-induced apoptosis via PI3K/Akt and MAPK/ERK signaling pathways. Cell Signal. 25:1126–1135. 2013. View Article : Google Scholar : PubMed/NCBI

30 

Li XM, Yang Q, Li XB, Cheng Q, Zhang K, Han J, Zhao JN, Liu G and Zhao MG: Estrogen-like neuroprotection of isopsoralen against spinal cord injury through estrogen receptor ERα. Metab Brain Dis. 32:259–265. 2017. View Article : Google Scholar : PubMed/NCBI

31 

Feng CY, Huang XR, Qi MX, Tang SW, Hu YH, Chen S and Ke FJ: Mitochondrial proteomic analysis of isopsoralen protection against oxidative damage in human lens epithelial cells. Chin J Integr Med. 18:529–533. 2012. View Article : Google Scholar : PubMed/NCBI

32 

Manolagas SC: Birth and death of bone cells: Basic regulatory mechanisms and implications for the pathogenesis and treatment of osteoporosis. Endocr Rev. 21:115–137. 2000. View Article : Google Scholar : PubMed/NCBI

33 

Wang J, Li SF, Wang T, Sun CH, Wang L, Huang MJ, Chen J, Zheng SW, Wang N, Zhang YJ and Chen TY: Isopsoralen- mediated suppression of bone marrow adiposity and attenuation of the adipogenic commitment of bone marrow-derived mesenchymal stem cells. Int J Mol Med. 39:527–538. 2017. View Article : Google Scholar : PubMed/NCBI

34 

Son Y, Kim S, Chung HT and Pae HO: Reactive oxygen species in the activation of MAP kinases. Methods Enzymol. 528:27–48. 2013. View Article : Google Scholar : PubMed/NCBI

35 

Andreyev AY, Kushnareva YE, Murphy AN and Starkov AA: Mitochondrial ROS metabolism: 10 years later. Biochemistry (Mosc). 80:517–531. 2015. View Article : Google Scholar : PubMed/NCBI

36 

Mailloux RJ: Teaching the fundamentals of electron transfer reactions in mitochondria and the production and detection of reactive oxygen species. Redox Biol. 4:381–398. 2015. View Article : Google Scholar : PubMed/NCBI

37 

Brand MD: Mitochondrial generation of superoxide and hydrogen peroxide as the source of mitochondrial redox signaling. Free Radic Biol Med. 100:14–31. 2016. View Article : Google Scholar : PubMed/NCBI

38 

Reczek CR and Chandel NS: ROS-dependent signal transduction. Curr Opin Cell Biol. 33:8–13. 2015. View Article : Google Scholar : PubMed/NCBI

39 

Kowaltowski AJ, de Souza-Pinto NC, Castilho RF and Vercesi AE: Mitochondria and reactive oxygen species. Free Radic Biol Med. 47:333–343. 2009. View Article : Google Scholar : PubMed/NCBI

40 

Herbst RS: Review of epidermal growth factor receptor biology. Int J Radiat Oncol Biol Phys. 59 (Suppl 2):S21–S26. 2004. View Article : Google Scholar

41 

Talasila KM, Soentgerath A, Euskirchen P, Rosland GV, Wang J, Huszthy PC, Prestegarden L, Skaftnesmo KO, Sakariassen PØ, Eskilsson E, et al: EGFR wild-type amplification and activation promote invasion and development of glioblastoma independent of angiogenesis. Acta Neuropathol. 125:683–698. 2013. View Article : Google Scholar : PubMed/NCBI

42 

Li J, He W, Liao B and Yang J: FFA-ROS-P53-mediated mitochondrial apoptosis contributes to reduction of osteoblastogenesis and bone mass in type 2 diabetes mellitus. Sci Rep. 5:127242015. View Article : Google Scholar : PubMed/NCBI

43 

She C, Zhu LQ, Zhen YF, Wang XD and Dong QR: Activation of AMPK protects against hydrogen peroxide-induced osteoblast apoptosis through autophagy induction and NADPH maintenance: New implications for osteonecrosis treatment? Cell Signal. 26:1–8. 2014. View Article : Google Scholar : PubMed/NCBI

44 

Krishnan V, Bryant HU and Macdougald OA: Regulation of bone mass by wnt signaling. J Clin Invest. 116:1202–1209. 2006. View Article : Google Scholar : PubMed/NCBI

45 

Valenta T, Hausmann G and Basler K: The many faces and functions of β-catenin. EMBO J. 31:2714–2736. 2012. View Article : Google Scholar : PubMed/NCBI

46 

Rossini M, Gatti D and Adami S: Involvement of WNT/β-catenin signaling in the treatment of osteoporosis. Calcif Tissue Int. 93:121–132. 2013. View Article : Google Scholar : PubMed/NCBI

47 

Baron R and Kneissel M: WNT signaling in bone homeostasis and disease: From human mutations to treatments. Nat Med. 19:179–192. 2013. View Article : Google Scholar : PubMed/NCBI

48 

Baron R, Rawadi G and Roman-Roman S: Wnt signaling: A key regulator of bone mass. Curr Top Dev Biol. 76:103–127. 2006. View Article : Google Scholar : PubMed/NCBI

49 

Zhang J, Zhang X, Zhang L, Zhou F, van Dinther M and Ten Dijke P: LRP8 mediates Wnt/beta-catenin signaling and controls osteoblast differentiation. J Bone Miner Res. 27:2065–2074. 2012. View Article : Google Scholar : PubMed/NCBI

50 

Yu HM, Jerchow B, Sheu TJ, Liu B, Costantini F, Puzas JE, Birchmeier W and Hsu W: The role of Axin2 in calvarial morphogenesis and craniosynostosis. Development. 132:1995–2005. 2005. View Article : Google Scholar : PubMed/NCBI

51 

Gaur T, Lengner CJ, Hovhannisyan H, Bhat RA, Bodine PV, Komm BS, Javed A, van Wijnen AJ, Stein JL, Stein GS and Lian JB: Canonical WNT signaling promotes osteogenesis by directly stimulating Runx2 gene expression. J Biol Chem. 280:33132–33140. 2005. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

September 2019
Volume 18 Issue 3

Print ISSN: 1792-0981
Online ISSN:1792-1015

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Li, Y., Wu, B., Liang, J., & Li, F. (2019). Isopsoralen ameliorates H2O2‑induced damage in osteoblasts via activating the Wnt/β‑catenin pathway. Experimental and Therapeutic Medicine, 18, 1899-1906. https://doi.org/10.3892/etm.2019.7741
MLA
Li, Y., Wu, B., Liang, J., Li, F."Isopsoralen ameliorates H2O2‑induced damage in osteoblasts via activating the Wnt/β‑catenin pathway". Experimental and Therapeutic Medicine 18.3 (2019): 1899-1906.
Chicago
Li, Y., Wu, B., Liang, J., Li, F."Isopsoralen ameliorates H2O2‑induced damage in osteoblasts via activating the Wnt/β‑catenin pathway". Experimental and Therapeutic Medicine 18, no. 3 (2019): 1899-1906. https://doi.org/10.3892/etm.2019.7741