Open Access

Combination of metformin and p38 MAPK inhibitor, SB203580, reduced myocardial ischemia/reperfusion injury in non‑obese type 2 diabetic Goto‑Kakizaki rats

  • Authors:
    • Jantira Sanit
    • Eakkapote Prompunt
    • Punyanuch Adulyaritthikul
    • Nuttikarn Nokkaew
    • Podsawee Mongkolpathumrat
    • Kantapich Kongpol
    • Anusak Kijtawornrat
    • Soontaree Petchdee
    • Stephanie Barrère‑Lemaire
    • Sarawut Kumphune
  • View Affiliations

  • Published online on: July 10, 2019     https://doi.org/10.3892/etm.2019.7763
  • Pages: 1701-1714
  • Copyright: © Sanit et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Diabetic cardiomyopathy, especially myocardial ischemia reperfusion (I/R) injury, is a major cause of morbidity and mortality in type 2 diabetic patients. The increasing of basal p38 MAP Kinase (p38 MAPK) activation is a major factor that aggravates cardiac death on diabetic cardiomyopathy. In addition, metformin also shows cardio‑protective effects on myocardial ischemia/reperfusion injury. In this study, we investigated the effect of the combination between metformin and p38 MAPK inhibitor (SB203580) in diabetic rats subjected to I/R injury. H9c2 cells were induced into a hyperglycemic condition and treated with metformin, SB203580 or the combination of metformin and SB203580. In addition, cells in both the presence and absence of drug treatment were subjected to simulated ischemia/reperfusion injury. Cell viability and cellular reactive oxygen species (ROS) were determined. Moreover, the Goto‑Kakizaki (GK) rats were treated with metformin, SB203580, and the combination of metformin and SB203580 for 4 weeks. Diabetic parameters and cardiac functions were assessed. Finally, rat hearts were induced ischemia/reperfusion injury for the purpose of infarct size analysis and determination of signal transduction. A high‑glucose condition did not reduce cell viability but significantly increased ROS production and significantly decreased cell viability after induced sI/R. Treatment using drugs was shown to reduce ROS generation and cardiac cell death. The GK rats displayed diabetic phenotype by increasing diabetic parameters and these parameters were significantly decreased when treated with drugs. Treatment with metformin or SB203580 could significantly reduce the infarct size. Interestingly, the combination of metformin and SB203580 could enhance cardio‑protective ability. Myocardial I/R injury significantly increased p38 MAPK phosphorylation, Bax/Bcl‑2 ratio and caspase‑3 level. Treatment with drugs significantly decreased the p38 MAPK phosphorylation, Bax/Bcl‑2 ratio, caspase‑3 level and increased Akt phosphorylation. In conclusion, using the combination of metformin and SB203580 shows positive cardio‑protective effects on diabetic ischemic cardiomyopathy.

References

1 

Cho NH, Shaw JE, Karuranga S, Huang Y, da Rocha Fernandes JD, Ohlrogge AW and Malanda B: IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res Clin Pract. 138:271–281. 2018. View Article : Google Scholar : PubMed/NCBI

2 

American Diabetes Association: 2. Classification and diagnosis of diabetes. Diabetes Care. 39 (Suppl 1):S13–S22. 2016. View Article : Google Scholar : PubMed/NCBI

3 

Mathers CD and Loncar D: Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med. 3:e4422006. View Article : Google Scholar : PubMed/NCBI

4 

Michael J and Fowler M: Microvascular and macrovascular complications of diabetes. Clin Diabetes. 26:77–82. 2008. View Article : Google Scholar

5 

Morrish NJ, Wang SL, Stevens LK, Fuller JH and Keen H: Mortality and causes of death in the WHO multinational study of vascular disease in diabetes. Diabetologia. 44 (Suppl 2):S14–S21. 2001. View Article : Google Scholar : PubMed/NCBI

6 

Huang D, Refaat M, Mohammedi K, Jayyousi A, Al Suwaidi J and Abi Khalil C: Macrovascular complications in patients with diabetes and prediabetes. Biomed Res Int. 2017:78391012017. View Article : Google Scholar : PubMed/NCBI

7 

Yang B, Yang J, Bai J, Pu P, Liu J, Wang F and Ruan B: Suv39h1 protects from myocardial ischemia-reperfusion injury in diabetic rats. Cell Physiol Biochem. 33:1176–1185. 2014. View Article : Google Scholar : PubMed/NCBI

8 

Wang ZV and Hill JA: Diabetic cardiomyopathy: Catabolism driving metabolism. Circulation. 131:771–773. 2015. View Article : Google Scholar : PubMed/NCBI

9 

D'Souza A, Howarth FC, Yanni J, Dobryznski H, Boyett MR, Adeghate E, Bidasee KR and Singh J: Left ventricle structural remodelling in the prediabetic Goto-Kakizaki rat. Exp Physiol. 96:875–888. 2011. View Article : Google Scholar : PubMed/NCBI

10 

Lee JC, Laydon JT, McDonnell PC, Gallagher TF, Kumar S, Green D, McNulty D, Blumenthal MJ, Heys JR, Landvatter SW, et al: A protein kinase involved in the regulation of inflammatory cytokine biosynthesis. Nature. 372:739–746. 1994. View Article : Google Scholar : PubMed/NCBI

11 

Han J, Lee JD, Bibbs L and Ulevitch RJ: A MAP kinase targeted by endotoxin and hyperosmolarity in mammalian cells. Science. 265:808–811. 1994. View Article : Google Scholar : PubMed/NCBI

12 

Gao Y, Kang L, Li C, Wang X, Sun C, Li Q, Liu R and Wang J: Resveratrol ameliorates diabetes-induced cardiac dysfunction through AT1R-ERK/p38 MAPK signaling pathway. Cardiovasc Toxicol. 16:130–137. 2016. View Article : Google Scholar : PubMed/NCBI

13 

Shi L, Yu X, Yang H and Wu X: Advanced glycation end products induce human corneal epithelial cells apoptosis through generation of reactive oxygen species and activation of JNK and p38 MAPK pathways. PLoS One. 8:e667812013. View Article : Google Scholar : PubMed/NCBI

14 

Yang J, Guo X, Yang J, Ding JW, Li S, Yang R, Fan ZX and Yang CJ: RP105 protects against apoptosis in ischemia/reperfusion-induced myocardial damage in rats by suppressing TLR4-mediated signaling pathways. Cell Physiol Biochem. 36:2137–2148. 2015. View Article : Google Scholar : PubMed/NCBI

15 

Kumphune S, Chattipakorn S and Chattipakorn N: Role of p38 inhibition in cardiac ischemia/reperfusion injury. Eur J Clin Pharmacol. 68:513–524. 2012. View Article : Google Scholar : PubMed/NCBI

16 

Sasaki H, Asanuma H, Fujita M, Takahama H, Wakeno M, Ito S, Ogai A, Asakura M, Kim J, Minamino T, et al: Metformin prevents progression of heart failure in dogs: Role of AMP-activated protein kinase. Circulation. 119:2568–2577. 2009. View Article : Google Scholar : PubMed/NCBI

17 

Gundewar S, Calvert JW, Jha S, Toedt-Pingel I, Ji SY, Nunez D, Ramachandran A, Anaya-Cisneros M, Tian R and Lefer DJ: Activation of AMP-activated protein kinase by metformin improves left ventricular function and survival in heart failure. Circ Res. 104:403–411. 2009. View Article : Google Scholar : PubMed/NCBI

18 

Hu M, Ye P, Liao H, Chen M and Yang F: Metformin protects H9C2 cardiomyocytes from High-glucose and hypoxia/reoxygenation injury via inhibition of reactive oxygen species generation and inflammatory responses: Role of AMPK and JNK. J Diabetes Res. 2016:29619542016. View Article : Google Scholar : PubMed/NCBI

19 

Xu W, Wu W, Chen J, Guo R, Lin J, Liao X and Feng J: Exogenous hydrogen sulfide protects H9c2 cardiac cells against high glucose-induced injury by inhibiting the activities of the p38 MAPK and ERK1/2 pathways. Int J Mol Med. 32:917–925. 2013. View Article : Google Scholar : PubMed/NCBI

20 

Li K, Cui YC, Zhang H, Liu XP, Zhang D, Wu AL, Li JJ and Tang Y: Glutamine reduces the apoptosis of H9C2 cells treated with High-glucose and reperfusion through an Oxidation-related mechanism. PLoS One. 10:e01324022015. View Article : Google Scholar : PubMed/NCBI

21 

Li YG, Han BB, Li F, Yu JW, Dong ZF, Niu GM, Qing YW, Li JB, Wei M and Zhu W: High Glucose induces down-regulated GRIM-19 expression to activate STAT3 signaling and promote cell proliferation in cell culture. PLoS One. 11:e01536592016. View Article : Google Scholar : PubMed/NCBI

22 

Liu ZW, Zhu HT, Chen KL, Dong X, Wei J, Qiu C and Xue JH: Protein kinase RNA-like endoplasmic reticulum kinase (PERK) signaling pathway plays a major role in reactive oxygen species (ROS)-mediated endoplasmic reticulum stress-induced apoptosis in diabetic cardiomyopathy. Cardiovasc Diabetol. 12:1582013. View Article : Google Scholar : PubMed/NCBI

23 

Paiyabhroma N, Nernpermpisooth N and Kumphune S: The recombinant human secretory leukocyte protease inhibitor (SLPI) protects cardiac fibroblasts injury against an in vitro ischemia/reperfusion injury. J Appl Pharm Sci. 8:156–162. 2018. View Article : Google Scholar

24 

Kumphune S, Chattipakorn S and Chattipakorn N: Roles of p38-MAPK in insulin resistant heart: Evidence from bench to future bedside application. Curr Pharm Des. 19:5742–5754. 2013. View Article : Google Scholar : PubMed/NCBI

25 

Kravchuk E, Grineva E, Bairamov A, Galagudza M and Vlasov T: The effect of metformin on the myocardial tolerance to ischemia-reperfusion injury in the rat model of diabetes mellitus type II. Exp Diabetes Res. 2011:9074962011. View Article : Google Scholar : PubMed/NCBI

26 

Chen P, Yuan Y, Zhang T, Xu B, Gao Q and Guan T: Pentosan polysulfate ameliorates apoptosis and inflammation by suppressing activation of the p38 MAPK pathway in high glucosetreated HK2 cells. Int J Mol Med. 41:908–914. 2018.PubMed/NCBI

27 

Vahtola E, Louhelainen M, Forstén H, Merasto S, Raivio J, Kaheinen P, Kytö V, Tikkanen, Levijoki J and Mervaala E: Sirtuin1-p53, forkhead box O3a, p38 and post-infarct cardiac remodeling in the spontaneously diabetic Goto-Kakizaki rat. Cardiovasc Diabetol. 9:52010. View Article : Google Scholar : PubMed/NCBI

28 

Kumphune S, Surinkaew S, Chattipakorn SC and Chattipakorn N: Inhibition of p38 MAPK activation protects cardiac mitochondria from ischemia/reperfusion injury. Pharm Biol. 53:1831–1841. 2015. View Article : Google Scholar : PubMed/NCBI

29 

Driver C, Bamitale KDS, Kazi A, Olla M, Nyane NA and Owira PMO: Cardioprotective effects of metformin. J Cardiovasc Pharmacol. 72:121–127. 2018.PubMed/NCBI

30 

Seshadri KG: Non obesity, autoimmunity and the missing pieces of diabetes in the adult. Int J Diabetes Dev Ctries. 33:69–70. 2013. View Article : Google Scholar

31 

Vaag A and Lund SS: Non-obese patients with type 2 diabetes and prediabetic subjects: Distinct phenotypes requiring special diabetes treatment and (or) prevention? Appl Physiol Nutr Metab. 32:912–920. 2007. View Article : Google Scholar : PubMed/NCBI

32 

Kashima S, Inoue K, Matsumoto M and Akimoto K: Prevalence and characteristics of non-obese diabetes in Japanese men and women: The Yuport medical checkup center study. J Diabetes. 7:523–530. 2015. View Article : Google Scholar : PubMed/NCBI

33 

American Diabetes Associatio: Standards of medical care in diabetes-2017 abridged for primary care providers. Clin Diabetes. 35:5–26. 2017.PubMed/NCBI

34 

Ahmad T, Ohlsson C, Sääf M, Ostenson CG and Kreicbergs A: Skeletal changes in type-2 diabetic Goto-Kakizaki rats. J Endocrinol. 178:111–116. 2003. View Article : Google Scholar : PubMed/NCBI

35 

Kuwabara WMT, Panveloski-Costa AC, Yokota CNF, Pereira JNB, Filho JM, Torres RP, Hirabara SM, Curi R and Alba-Loureiro TC: Comparison of Goto-Kakizaki rats and high fat diet-induced obese rats: Are they reliable models to study Type 2 diabetes mellitus? PLoS One. 12:e01896222017. View Article : Google Scholar : PubMed/NCBI

36 

Hansson LI, Menander-Sellman K, Stenström A and Thorngren KG: Rate of normal longitudinal bone growth in the rat. Calcif Tissue Res. 10:238–251. 1972. View Article : Google Scholar : PubMed/NCBI

37 

Yoshida T, Okuno A, Tanaka J, Takahashi K, Nakashima R, Kanda S, Ogawa J, Hagisawa Y and Fujiwara T: Metformin primarily decreases plasma glucose not by gluconeogenesis suppression but by activating glucose utilization in a non-obese type 2 diabetes Goto-Kakizaki rats. Eur J Pharmacol. 623:141–147. 2009. View Article : Google Scholar : PubMed/NCBI

38 

Oh TJ, Shin JY, Kang GH, Park KS and Cho YM: Effect of the combination of metformin and fenofibrate on glucose homeostasis in diabetic Goto-Kakizaki rats. Exp Mol Med. 45:e302013. View Article : Google Scholar : PubMed/NCBI

39 

Carlson CJ and Rondinone CM: Pharmacological inhibition of p38 MAP kinase results in improved glucose uptake in insulin-resistant 3T3-L1 adipocytes. Metabolism. 54:895–901. 2005. View Article : Google Scholar : PubMed/NCBI

40 

Bazuine M, Carlotti F, Rabelink MJ, Vellinga J, Hoeben RC and Maassen JA: The p38 mitogen-activated protein kinase inhibitor SB203580 reduces glucose turnover by the glucose transporter-4 of 3T3-L1 adipocytes in the insulin-stimulated state. Endocrinology. 146:1818–1824. 2005. View Article : Google Scholar : PubMed/NCBI

41 

Burns CJ, Howell SL, Jones PM and Persaud SJ: The p38 mitogen-activated protein kinase cascade is not required for the stimulation of insulin secretion from rat islets of Langerhans. Mol Cell Endocrinol. 148:29–35. 1999. View Article : Google Scholar : PubMed/NCBI

42 

Vahtola E, Storvik M, Louhelainen M, Merasto S, Lakkisto P, Lakkisto J, Tikkanen I, Kaheinen P, Levijoki J and Mervaala E: Effects of levosimendan on cardiac gene expression profile and post-infarct cardiac remodelling in diabetic Goto-Kakizaki rats. Basic Clin Pharmacol Toxicol. 109:387–397. 2011. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

September 2019
Volume 18 Issue 3

Print ISSN: 1792-0981
Online ISSN:1792-1015

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Sanit, J., Prompunt, E., Adulyaritthikul, P., Nokkaew, N., Mongkolpathumrat, P., Kongpol, K. ... Kumphune, S. (2019). Combination of metformin and p38 MAPK inhibitor, SB203580, reduced myocardial ischemia/reperfusion injury in non‑obese type 2 diabetic Goto‑Kakizaki rats. Experimental and Therapeutic Medicine, 18, 1701-1714. https://doi.org/10.3892/etm.2019.7763
MLA
Sanit, J., Prompunt, E., Adulyaritthikul, P., Nokkaew, N., Mongkolpathumrat, P., Kongpol, K., Kijtawornrat, A., Petchdee, S., Barrère‑Lemaire, S., Kumphune, S."Combination of metformin and p38 MAPK inhibitor, SB203580, reduced myocardial ischemia/reperfusion injury in non‑obese type 2 diabetic Goto‑Kakizaki rats". Experimental and Therapeutic Medicine 18.3 (2019): 1701-1714.
Chicago
Sanit, J., Prompunt, E., Adulyaritthikul, P., Nokkaew, N., Mongkolpathumrat, P., Kongpol, K., Kijtawornrat, A., Petchdee, S., Barrère‑Lemaire, S., Kumphune, S."Combination of metformin and p38 MAPK inhibitor, SB203580, reduced myocardial ischemia/reperfusion injury in non‑obese type 2 diabetic Goto‑Kakizaki rats". Experimental and Therapeutic Medicine 18, no. 3 (2019): 1701-1714. https://doi.org/10.3892/etm.2019.7763