Open Access

Overexpression of TGF‑β enhances the migration and invasive ability of ectopic endometrial cells via ERK/MAPK signaling pathway

  • Authors:
    • Zhihong Liu
    • Lisha Yi
    • Miaomiao Du
    • Guifang Gong
    • Yali Zhu
  • View Affiliations

  • Published online on: April 23, 2019     https://doi.org/10.3892/etm.2019.7522
  • Pages: 4457-4464
  • Copyright : © Liu et al. This is an open access article distributed under the terms of Creative Commons Attribution License [CC BY 4.0].

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Endometriosis is a common gynecological disease with manifestations of endometrial‑like tissue outside the uterus. Transforming growth factor‑β (TGF‑β) is known to facilitate a series of biological events in many cells, including migration. However, the roles of TGF‑β in endometriosis still remain largely unknown. The aim of the present study was to discover the role of TGF‑β1 in endometriosis development and progression and its associated mechanisms. It was demonstrated that the expression of TGF‑β1 was significantly elevated in endometriosis in comparison with that in normal tissue. Overexpression of TGF‑β increased the proliferation and upregulated proliferating cell nuclear antigen and cyclin D1 in endometrial stromal cells (ESCs). Furthermore, TGF‑β overexpression also triggered a series of biological events occurring in ESCs, including cell migration and invasion, and activated the extracellular signal‑regulated kinase (ERK)/mitogen‑activated protein kinase (MAPK) signaling pathway. The inhibition of the ERK/MAPK pathway reversed the previous effects of TGF‑β overexpression. Collectively, the present results indicate that overexpression of TGF‑β enhances the migration and invasion of ectopic ESCs via the ERK/MAPK signaling pathway, providing theoretical evidence for the development of new treatment methods targeting the TGF‑β‑ERK/MAPK signaling pathway for prophylaxis of endometriosis.

References

1 

Geukens EI, Apers S, Meuleman C, D'Hooghe TM and Dancet EAF: Patient-centeredness and endometriosis: Definition, measurement, and current status. Best Pract Res Clin Obstet Gynaecol. 50:11–17. 2018. View Article : Google Scholar : PubMed/NCBI

2 

Patel BG, Lenk EE, Lebovic DI, Shu Y, Yu J and Taylor RN: Pathogenesis of endometriosis: Interaction between endocrine and inflammatory pathways. Best Pract Res Clin Obstet Gynaecol. 50:50–60. 2018. View Article : Google Scholar : PubMed/NCBI

3 

Sikora J, Wróblewska-Czech A, Smycz-Kubańska M, Mielczarek-Palacz A, Cygal A, Witek A and Kondera-Anasz Z: The role of complement components C1q, MBL and C1 inhibitor in pathogenesis of endometriosis. Arch Gynecol Obstet. 297:1495–1501. 2018. View Article : Google Scholar : PubMed/NCBI

4 

Barra F and Ferrero S: mTor inhibitors for the treatment of endometriosis. Geburtshilfe Frauenheilkd. 78:283–284. 2018. View Article : Google Scholar : PubMed/NCBI

5 

Chatterjee K, Jana S, DasMahapatra P and Swarnakar S: EGFR-mediated matrix metalloproteinase-7 up-regulation promotes epithelial-mesenchymal transition via ERK1-AP1 axis during ovarian endometriosis progression. FASEB J. 32:4560–4572. 2018. View Article : Google Scholar : PubMed/NCBI

6 

Clemenza S, Sorbi F, Noci I, Capezzuoli T, Turrini I, Carriero C, Buffi N, Fambrini M and Petraglia F: From pathogenesis to clinical practice: Emerging medical treatments for endometriosis. Best Pract Res Clin Obstet Gynaecol. 51:92–101. 2018. View Article : Google Scholar : PubMed/NCBI

7 

Lee MY, Kim SH, Oh YS, Heo SH, Kim KH, Chae HD, Kim CH and Kang BM: Role of interleukin-32 in the pathogenesis of endometriosis: In vitro, human and transgenic mouse data. Hum Reprod. 33:807–816. 2018. View Article : Google Scholar : PubMed/NCBI

8 

Aerts L, Grangier L, Streuli I, Dallenbach P, Marci R, Wenger JM and Pluchino N: Psychosocial impact of endometriosis: From co-morbidity to intervention. Best Pract Res Clin Obstet Gynaecol. 50:2–10. 2018. View Article : Google Scholar : PubMed/NCBI

9 

Kyama CM, Overbergh L, Debrock S, Valckx D, Vander Perre S, Meuleman C, Mihalyi A, Mwenda JM, Mathieu C and D'Hooghe TM: Increased peritoneal and endometrial gene expression of biologically relevant cytokines and growth factors during the menstrual phase in women with endometriosis. Fertil Steril. 85:1667–1675. 2006. View Article : Google Scholar : PubMed/NCBI

10 

Xu Y and Li L: Primary squamous cell carcinoma arising from endometriosis of the ovary: A case report and literature review. Curr Probl Cancer. 42:329–336. 2018. View Article : Google Scholar : PubMed/NCBI

11 

Măluţan AM, Drugan T, Ciortea R, Mocan-Hognogi RF, Bucuri C, Rada MP and Mihu D: Serum anti-inflammatory cytokines for the evaluation of inflammatory status in endometriosis. J Res Med Sci. 20:668–674. 2015. View Article : Google Scholar : PubMed/NCBI

12 

Sharpe-Timms KL, Nabli H, Zimmer RL, Birt JA and Davis JW: Inflammatory cytokines differentially up-regulate human endometrial haptoglobin production in women with endometriosis. Hum Reprod. 25:1241–1250. 2010. View Article : Google Scholar : PubMed/NCBI

13 

Fan YY, Chen HY, Chen W, Liu YN, Fu Y and Wang LN: Expression of inflammatory cytokines in serum and peritoneal fluid from patients with different stages of endometriosis. Gynecol Endocrinol. 34:507–512. 2018. View Article : Google Scholar : PubMed/NCBI

14 

Kyama CM, Overbergh L, Mihalyi A, Cuneo S, Chai D, Debrock S, Mwenda JM, Mathieu C, Nugent NP and D'Hooghe TM: Effect of recombinant human TNF-binding protein-1 and GnRH antagonist on mRNA expression of inflammatory cytokines and adhesion and growth factors in endometrium and endometriosis tissues in baboons. Fertil Steril. 89:1306–1313. 2008. View Article : Google Scholar : PubMed/NCBI

15 

Ahn SH, Edwards AK, Singh SS, Young SL, Lessey BA and Tayade C: IL-17A contributes to the pathogenesis of endometriosis by triggering proinflammatory cytokines and angiogenic growth factors. J Immunol. 195:2591–2600. 2015. View Article : Google Scholar : PubMed/NCBI

16 

Reichelt U, Keichel S, Barcena de Arellano ML, Chiantera V, Schneider A and Mechsner S: High lymph vessel density and expression of lymphatic growth factors in peritoneal endometriosis. Reprod Sci. 19:876–882. 2012. View Article : Google Scholar : PubMed/NCBI

17 

Hills C, Price GW, Wall MJ, Kaufmann TJ, Chi-Wai Tang S, Yiu WH and Squires PE: Transforming growth factor beta 1 drives a switch in connexin mediated cell-to-cell communication in tubular cells of the diabetic kidney. Cell Physiol Biochem. 45:2369–2388. 2018. View Article : Google Scholar : PubMed/NCBI

18 

Sokolova O, Kähne T, Bryan K and Naumann M: Interactome analysis of transforming growth factor-β-activated kinase 1 in Helicobacter pylori-infected cells revealed novel regulators tripartite motif 28 and CDC37. Oncotarget. 9:14366–14381. 2018. View Article : Google Scholar : PubMed/NCBI

19 

Huang AL, Liu SG, Qi WJ, Zhao YF, Li YM, Lei B, Sheng WJ and Shen H: TGF-β1 protein expression in non-small cell lung cancers is correlated with prognosis. Asian Pac J Cancer Prev. 15:8143–8147. 2014. View Article : Google Scholar : PubMed/NCBI

20 

Lee YH and Schiemann WP: Chemotherapeutic targeting of the transforming growth factor-β pathway in breast cancers. Breast Cancer Manag. 3:73–85. 2014. View Article : Google Scholar : PubMed/NCBI

21 

Lustri AM, Di Matteo S, Fraveto A, Costantini D, Cantafora A, Napoletano C, Bragazzi MC, Giuliante F, De Rose AM, Berloco PB, et al: TGF-β signaling is an effective target to impair survival and induce apoptosis of human cholangiocarcinoma cells: A study on human primary cell cultures. PLoS One. 12:e01839322017. View Article : Google Scholar : PubMed/NCBI

22 

Ohira S, Itatsu K, Sasaki M, Harada K, Sato Y, Zen Y, Ishikawa A, Oda K, Nagasaka T, Nimura Y and Nakanuma Y: Local balance of transforming growth factor-beta1 secreted from cholangiocarcinoma cells and stromal-derived factor-1 secreted from stromal fibroblasts is a factor involved in invasion of cholangiocarcinoma. Pathol Int. 56:381–389. 2006. View Article : Google Scholar : PubMed/NCBI

23 

Young VJ, Ahmad SF, Duncan WC and Horne AW: The role of TGF-β in the pathophysiology of peritoneal endometriosis. Hum Reprod Update. 23:548–559. 2017. View Article : Google Scholar : PubMed/NCBI

24 

Guo SW, Du Y and Liu X: Platelet-derived TGF-β1 mediates the down-modulation of NKG2D expression and may be responsible for impaired natural killer (NK) cytotoxicity in women with endometriosis. Hum Reprod. 31:1462–1474. 2016. View Article : Google Scholar : PubMed/NCBI

25 

Young VJ, Brown JK, Maybin J, Saunders PT, Duncan WC and Horne AW: Transforming growth factor-β induced Warburg-like metabolic reprogramming may underpin the development of peritoneal endometriosis. J Clin Endocrinol Metab. 99:3450–3459. 2014. View Article : Google Scholar : PubMed/NCBI

26 

Leconte M, Nicco C, Ngô C, Arkwright S, Chéreau C, Guibourdenche J, Weill B, Chapron C, Dousset B and Batteux F: Antiproliferative effects of cannabinoid agonists on deep infiltrating endometriosis. Am J Pathol. 177:2963–2970. 2010. View Article : Google Scholar : PubMed/NCBI

27 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta DeltaC(T)) method. Methods. 25:402–408. 2001. View Article : Google Scholar : PubMed/NCBI

28 

Kim MH, Ham O, Lee SY, Choi E, Lee CY, Park JH, Lee J, Seo HH, Seung M, Choi E, et al: MicroRNA-365 inhibits the proliferation of vascular smooth muscle cells by targeting cyclin D1. J Cell Biochem. 115:1752–1761. 2014. View Article : Google Scholar : PubMed/NCBI

29 

Wu R, Duan L, Cui F, Cao J, Xiang Y, Tang Y and Zhou L: S100A9 promotes human hepatocellular carcinoma cell growth and invasion through RAGE-mediated ERK1/2 and p38 MAPK pathways. Exp Cell Res. 334:228–238. 2015. View Article : Google Scholar : PubMed/NCBI

30 

Mei J, Jin LP, Ding D, Li MQ, Li DJ and Zhu XY: Inhibition of IDO1 suppresses cyclooxygenase-2 and matrix metalloproteinase-9 expression and decreases proliferation, adhesion and invasion of endometrial stromal cells. Mol Hum Reprod. 18:467–476. 2012. View Article : Google Scholar : PubMed/NCBI

31 

Agic A, von Wussow U, Starzinski-Powitz A, Diedrich K, Altevogt P and Hornung D: Inhibition of cell proliferation, adhesion, and invasion with an anti-L1-cell adhesion molecule monoclonal antibody in an in vitro endometriosis model. Fertil Steril. 94:1102–1104. 2010. View Article : Google Scholar : PubMed/NCBI

32 

Koninckx PR, Ussia A, Zupi E and Gomel V: Association of endometriosis and adenomyosis: Vast literature but scant conclusive data. J Minim Invasive Gynecol. 25:745–748. 2018. View Article : Google Scholar : PubMed/NCBI

33 

Glavind MT, Møllgaard MV, Iversen ML, Arendt LH and Forman A: Obstetrical outcome in women with endometriosis including spontaneous hemoperitoneum and bowel perforation: A systematic review. Best Pract Res Clin Obstet Gynaecol. 51:41–52. 2018. View Article : Google Scholar : PubMed/NCBI

34 

Geng L, Tang X, Zhou K, Wang D, Wang S, Yao G, Chen W, Gao X, Chen W, Shi S, et al: MicroRNA-663 induces immune dysregulation by inhibiting TGF-β1 production in bone marrow-derived mesenchymal stem cells in patients with systemic lupus erythematosus. Cell Mol Immunol. 16:260–274. 2019. View Article : Google Scholar : PubMed/NCBI

35 

Ge P, Wei L, Zhang M, Hu B, Wang K and Li Y, Liu S, Wang J and Li Y: TRPC1/3/6 inhibition attenuates the TGF-β1-induced epithelial-mesenchymal transition in gastric cancer via the Ras/Raf1/ERK signaling pathway. Cell Biol Int. 42:975–984. 2018. View Article : Google Scholar : PubMed/NCBI

36 

Browne S, Jha AK, Ameri K, Marcus SG, Yeghiazarians Y and Healy KE: TGF-β1/CD105 signaling controls vascular network formation within growth factor sequestering hyaluronic acid hydrogels. PLoS One. 13:e01946792018. View Article : Google Scholar : PubMed/NCBI

37 

Wang Y, Du C, Zhang N, Li M, Liu Y, Zhao M, Wang F and Luo F: TGF-β1 mediates the effects of aspirin on colonic tumor cell proliferation and apoptosis. Oncol Lett. 15:5903–5909. 2018.PubMed/NCBI

38 

Omwandho CO, Konrad L, Halis G, Oehmke F and Tinneberg HR: Role of TGF-betas in normal human endometrium and endometriosis. Hum Reprod. 25:101–109. 2010. View Article : Google Scholar : PubMed/NCBI

39 

Larson-Casey JL, Deshane JS, Ryan AJ, Thannickal VJ and Carter AB: Macrophage Akt1 kinase-mediated mitophagy modulates apoptosis resistance and pulmonary fibrosis. Immunity. 44:582–596. 2016. View Article : Google Scholar : PubMed/NCBI

40 

Schäfer H, Struck B, Feldmann EM, Bergmann F, Grage-Griebenow E, Geismann C, Ehlers S, Altevogt P and Sebens S: TGF-β1-dependent L1CAM expression has an essential role in macrophage-induced apoptosis resistance and cell migration of human intestinal epithelial cells. Oncogene. 32:180–189. 2013. View Article : Google Scholar : PubMed/NCBI

41 

Tang XM, Zhao Y, Rossi MJ, Abu-Rustum RS, Ksander GA and Chegini N: Expression of transforming growth factor-beta (TGF beta) isoforms and TGF beta type II receptor messenger ribonucleic acid and protein, and the effect of TGF beta s on endometrial stromal cell growth and protein degradation in vitro. Endocrinology. 135:450–459. 1994. View Article : Google Scholar : PubMed/NCBI

42 

Rouce RH, Shaim H, Sekine T, Weber G, Ballard B, Ku S, Barese C, Murali V, Wu MF, Liu H, et al: The TGF-β/SMAD pathway is an important mechanism for NK cell immune evasion in childhood B-acute lymphoblastic leukemia. Leukemia. 30:800–811. 2016. View Article : Google Scholar : PubMed/NCBI

43 

Berchem G, Noman MZ, Bosseler M, Paggetti J, Baconnais S, Le Cam E, Nanbakhsh A, Moussay E, Mami-Chouaib F, Janji B and Chouaib S: Hypoxic tumor-derived microvesicles negatively regulate NK cell function by a mechanism involving TGF-β and miR23a transfer. Oncoimmunology. 5:e10629682015. View Article : Google Scholar : PubMed/NCBI

44 

Bocca C, Bozzo F, Cannito S, Colombatto S and Miglietta A: CLA reduces breast cancer cell growth and invasion through ERalpha and PI3K/Akt pathways. Chem Biol Interact. 183:187–193. 2010. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

June 2019
Volume 17 Issue 6

Print ISSN: 1792-0981
Online ISSN:1792-1015

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Liu, Z., Yi, L., Du, M., Gong, G., & Zhu, Y. (2019). Overexpression of TGF‑β enhances the migration and invasive ability of ectopic endometrial cells via ERK/MAPK signaling pathway. Experimental and Therapeutic Medicine, 17, 4457-4464. https://doi.org/10.3892/etm.2019.7522
MLA
Liu, Z., Yi, L., Du, M., Gong, G., Zhu, Y."Overexpression of TGF‑β enhances the migration and invasive ability of ectopic endometrial cells via ERK/MAPK signaling pathway". Experimental and Therapeutic Medicine 17.6 (2019): 4457-4464.
Chicago
Liu, Z., Yi, L., Du, M., Gong, G., Zhu, Y."Overexpression of TGF‑β enhances the migration and invasive ability of ectopic endometrial cells via ERK/MAPK signaling pathway". Experimental and Therapeutic Medicine 17, no. 6 (2019): 4457-4464. https://doi.org/10.3892/etm.2019.7522