Open Access

Performance of Topcon 3D optical coherence tomography‑2000 in re‑analyzing OCT‑1000 raw data

  • Authors:
    • Binyao Chen
    • Haoyu Chen
    • Ce Zheng
    • Mingzhi Zhang
  • View Affiliations

  • Published online on: April 12, 2019     https://doi.org/10.3892/etm.2019.7483
  • Pages: 4395-4402
  • Copyright: © Chen et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

The aim of the present study was to evaluate the accuracy of the Topcon 3D optical coherence tomography (OCT)‑2000 built‑in algorithm in analyzing OCT data acquired using the Topcon 3D OCT‑1000 instrument. Raw data of 3D macular 512x128 scans acquired using the Topcon 3D OCT‑1000 instrument were analyzed using the Topcon 3D OCT‑2000. The occurrence and severity of segmentation error (SE) were compared between the built‑in algorithms of the two instruments. Agreement in retinal thickness measurement between the two systems was evaluated in normal and abnormal eyes. A total of 87 eyes from 87 patients were included. The image quality score evaluated by Topcon OCT‑2000 software was lower than that of OCT‑1000. No statistically significant difference was identified in the SE rate (77.01 vs. 74.71%; P=0.864) or mean SE score (15.97 vs. 16.30; P=0.763) of the total scan area between the two algorithms. Intraclass correlation coefficient values for retinal thickness were high (0.951‑0.995). The mean paired difference in retinal thickness was 3.72‑5.77 µm (P<0.05) in normal and 0.61‑9.52 µm (P<0.05) in abnormal eyes. No significant difference in retinal segmentation performance was identified between OCT‑2000 and OCT‑1000 when analyzing OCT‑1000 raw data. In conclusion, retinal thickness measurements analyzed by the two OCT algorithms may be used interchangeably in normal eyes. Abnormal eyes required investigations as big differences in retinal thickness measurements may occur due to severe SEs.

References

1 

Bhende M, Shetty S, Parthasarathy MK and Ramya S: Optical coherence tomography: A guide to interpretation of common macular diseases. Indian J Ophthalmol. 66:20–35. 2018. View Article : Google Scholar : PubMed/NCBI

2 

Oberwahrenbrock T, Traber GL, Lukas S, Gabilondo I, Nolan R, Songster C, Balk L, Petzold A, Paul F, Villoslada P, et al: Multicenter reliability of semiautomatic retinal layer segmentation using OCT. Neurol Neuroimmunol Neuroinflamm. 5:e4492018. View Article : Google Scholar : PubMed/NCBI

3 

Waldman AT, Liu GT, Lavery AM, Liu G, Gaetz W, Aleman TS and Banwell BL: Optical coherence tomography and visual evoked potentials in pediatric MS. Neurol Neuroimmunol Neuroinflamm. 4:e3562017. View Article : Google Scholar : PubMed/NCBI

4 

You Y, Graham EC, Shen T, Yiannikas C, Parratt J, Gupta V, Barton J, Dwyer M, Barnett MH, Fraser CL, et al: Progressive inner nuclear layer dysfunction in non-optic neuritis eyes in MS. Neurol Neuroimmunol Neuroinflamm. 5:e4272018. View Article : Google Scholar : PubMed/NCBI

5 

Bennett J, de Seze J, Lana-Peixoto M, Palace J, Waldman A, Schippling S, Tenembaum S, Banwell B, Greenberg B, Levy M, et al: Neuromyelitis optica and multiple sclerosis: Seeing differences through optical coherence tomography. Mult Scler. 21:678–688. 2015. View Article : Google Scholar : PubMed/NCBI

6 

Wojtkowski M, Srinivasan V, Fujimoto JG, Ko T, Schuman JS, Kowalczyk A and Duker JS: Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography. Ophthalmology. 112:1734–1746. 2005. View Article : Google Scholar : PubMed/NCBI

7 

Reichel E, Ho J and Duker JS: OCT Units: Which One Is Right for Me? Review of ophthalmology, Boston. 16:622009.

8 

Roth NM, Saidha S, Zimmermann H, Brandt AU, Isensee J, Benkhellouf-Rutkowska A, Dornauer M, Kühn AA, Müller T, Calabresi PA and Paul F: Photoreceptor layer thinning in idiopathic Parkinson's disease. Mov Disord. 29:1163–1170. 2014. View Article : Google Scholar : PubMed/NCBI

9 

Topcon, . Optical Coherence Tomography 3D OCT-2000 Series. simplehttp://pdf.medicalexpo.com/pdf/topcon-europe-medical/brochure-topcon-3d-oct-2000-series/77876-75588-_12.html

10 

Larsson J, Zhu M, Sutter F and Gillies MC: Relation between reduction of foveal thickness and visual acuity in diabetic macular edema treated with intravitreal triamcinolone. Am J Ophthalmol. 139:802–806. 2005. View Article : Google Scholar : PubMed/NCBI

11 

Ooto S, Hangai M, Sakamoto A, Tomidokoro A, Araie M, Otani T, Kishi S, Matsushita K, Maeda N, Shirakashi M, et al: Three-dimensional profile of macular retinal thickness in normal Japanese eyes. Invest Ophthalmol Vis Sci. 51:465–473. 2010. View Article : Google Scholar : PubMed/NCBI

12 

Haouchine B, Massin P, Tadayoni R, Erginay A and Gaudric A: Diagnosis of macular pseudoholes and lamellar macular holes by optical coherence tomography. Am J Ophthalmol. 138:732–739. 2004. View Article : Google Scholar : PubMed/NCBI

13 

Sadda SR, Wu Z, Walsh AC, Richine L, Dougall J, Cortez R and LaBree LD: Errors in retinal thickness measurements obtained by optical coherence tomography. Ophthalmology. 113:285–293. 2006. View Article : Google Scholar : PubMed/NCBI

14 

Song Y, Lee BR, Shin YW and Lee YJ: Overcoming segmentation errors in measurements of macular thickness made by spectral-domain optical coherence tomography. Retina. 32:569–580. 2012. View Article : Google Scholar : PubMed/NCBI

15 

Kim SW, Oh J, Yang KS, Kim YH, Park JW, Rhim JW and Huh K: Stratus OCT image analysis with spectral-domain OCT (Topcon 3D OCT Viewer). Br J Ophthalmol. 96:93–98. 2012. View Article : Google Scholar : PubMed/NCBI

16 

Kim M, Lee SJ, Han J, Yu SY and Kwak HW: Segmentation error and macular thickness measurements obtained with spectral-domain optical coherence tomography devices in neovascular age-related macular degeneration. Indian J Ophthalmol. 61:213–217. 2013. View Article : Google Scholar : PubMed/NCBI

17 

Varga BE, Tátrai E, Cabrera DeBuc D and Somfai GM: The effect of incorrect scanning distance on boundary detection errors and macular thickness measurements by spectral domain optical coherence tomography: A cross sectional study. BMC Ophthalmol. 14:1482014. View Article : Google Scholar : PubMed/NCBI

18 

Ho J, Sull AC, Vuong LN, Chen Y, Liu J, Fujimoto JG, Schuman JS and Duker JS: Assessment of artifacts and reproducibility across spectral- and time-domain optical coherence tomography devices. Ophthalmology. 116:1960–1970. 2009. View Article : Google Scholar : PubMed/NCBI

19 

Tan CS, Cheong KX, Lim LW and Sadda SR: Comparison of macular choroidal thicknesses from swept source and spectral domain optical coherence tomography. Br J Ophthalmol. 100:995–999. 2016. View Article : Google Scholar : PubMed/NCBI

20 

Falavarjani KG, Mehrpuya A and Amirkourjani F: Effect of spectral domain optical coherence tomography image quality on macular thickness measurements and error rate. Curr Eye Res. 42:282–286. 2017. View Article : Google Scholar : PubMed/NCBI

21 

de Boer JF, Cense B, Park BH, Pierce MC, Tearney GJ and Bouma BE: Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography. Opt Lett. 28:2067–2069. 2003. View Article : Google Scholar : PubMed/NCBI

22 

Sander B, Al-Abiji HA, Kofod M and Jørgensen TM: Do different spectral domain OCT hardwares measure the same? Comparison of retinal thickness using third-party software. Graefes Arch Clin Exp Ophthalmol. 253:1915–1921. 2015. View Article : Google Scholar : PubMed/NCBI

23 

Krebs I, Falkner-Radler C, Hagen S, Haas P, Brannath W, Lie S, Ansari-Shahrezaei S and Binder S: Quality of the threshold algorithm in age-related macular degeneration: Stratus versus Cirrus OCT. Invest Ophthalmol Vis Sci. 50:995–1000. 2009. View Article : Google Scholar : PubMed/NCBI

24 

Odell D, Dubis AM, Lever JF, Stepien KE and Carroll J: Assessing errors inherent in OCT-derived macular thickness maps. J Ophthalmol. 2011:6925742011. View Article : Google Scholar : PubMed/NCBI

25 

Bedell HE: A functional test of foveal fixation based upon differential cone directional sensitivity. Vision Res. 20:557–560. 1980. View Article : Google Scholar : PubMed/NCBI

26 

Alshareef RA, Dumpala S, Rapole S, Januwada M, Goud A, Peguda HK and Chhablani J: Prevalence and distribution of segmentation errors in macular ganglion cell analysis of healthy eyes using cirrus HD-OCT. PLoS One. 11:e01553192016. View Article : Google Scholar : PubMed/NCBI

27 

Ray R, Stinnett SS and Jaffe GJ: Evaluation of image artifact produced by optical coherence tomography of retinal pathology. Am J Ophthalmol. 139:18–29. 2005. View Article : Google Scholar : PubMed/NCBI

28 

Bahrami B, Ewe SYP, Hong T, Zhu M, Ong G, Luo K and Chang A: Influence of retinal pathology on the reliability of macular thickness measurement: A comparison between optical coherence tomography devices. Ophthalmic Surg Lasers Imaging Retina. 48:319–325. 2017. View Article : Google Scholar : PubMed/NCBI

29 

Waldstein SM, Gerendas BS, Montuoro A, Simader C and Schmidt-Erfurth U: Quantitative comparison of macular segmentation performance using identical retinal regions across multiple spectral-domain optical coherence tomography instruments. Br J Ophthalmol. 99:794–800. 2015. View Article : Google Scholar : PubMed/NCBI

30 

Ho J, Adhi M, Baumal C, Liu J, Fujimoto JG, Duker JS and Waheed NK: Agreement and reproducibility of retinal pigment epithelial detachment volumetric measurements through optical coherence tomography. Retina. 35:467–472. 2015. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

June 2019
Volume 17 Issue 6

Print ISSN: 1792-0981
Online ISSN:1792-1015

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Chen, B., Chen, H., Zheng, C., & Zhang, M. (2019). Performance of Topcon 3D optical coherence tomography‑2000 in re‑analyzing OCT‑1000 raw data. Experimental and Therapeutic Medicine, 17, 4395-4402. https://doi.org/10.3892/etm.2019.7483
MLA
Chen, B., Chen, H., Zheng, C., Zhang, M."Performance of Topcon 3D optical coherence tomography‑2000 in re‑analyzing OCT‑1000 raw data". Experimental and Therapeutic Medicine 17.6 (2019): 4395-4402.
Chicago
Chen, B., Chen, H., Zheng, C., Zhang, M."Performance of Topcon 3D optical coherence tomography‑2000 in re‑analyzing OCT‑1000 raw data". Experimental and Therapeutic Medicine 17, no. 6 (2019): 4395-4402. https://doi.org/10.3892/etm.2019.7483