Open Access

Xenotransplantation of human dental pulp stem cells in platelet‑rich plasma for the treatment of full‑thickness articular cartilage defects in a rabbit model

  • Authors:
    • Ricardo Hideki Yanasse
    • Roger William de Lábio
    • Leonardo Marques
    • Josianne Tomazini Fukasawa
    • Rosimeire Segato
    • Angela Kinoshita
    • Mariza Akemi Matsumoto
    • Sergio Luis Felisbino
    • Bruno Solano
    • Ricardo Ribeiro dos Santos
    • Spencer Luiz Marques Payão
  • View Affiliations

  • Published online on: April 17, 2019     https://doi.org/10.3892/etm.2019.7499
  • Pages: 4344-4356
  • Copyright: © Yanasse et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Stem cells in platelet‑rich plasma (PRP) scaffolds may be a promising treatment for cartilage repair. Human dental pulp stem cell (hDPSC) subpopulations have been identified to have substantial angiogenic, neurogenic and regenerative potential when compared with other stem cell sources. The present study evaluated the potential of hDPSCs in a PRP scaffold to regenerate full‑thickness cartilage defects in rabbits. Full‑thickness articular cartilage defects were created in the patellar groove of the femur of 30 rabbits allocated into three experimental groups: Those with an untreated critical defect (CTL), those treated with PRP (PRP) and those treated with stem cells in a PRP scaffold (PRP+SC). The patellar grooves of the femurs from the experimental groups were evaluated macroscopically and histologically at 6 and 12 weeks post‑surgery. The synovial membranes were also collected and evaluated for histopathological analysis. The synovial lining cell layer was enlarged in the CTL group compared with the PRP group at 6 weeks (P=0.037) but not with the PRP+SC group. All groups exhibited low‑grade synovitis at 6 weeks and no synovitis at 12 weeks. Notably, macroscopic grades for the area of articular cartilage repair for the PRP+SC group were significantly improved compared with those in the CTL (P=0.001) and PRP (P=0.049) groups at 12 weeks. Furthermore, histological scores (modified O'Driscoll scoring system) of the patellar groove articular cartilage in the PRP+SC and PRP groups, in which the articular cartilage was primarily hyaline‑like, were significantly higher compared with those in the CTL group at 12 weeks (P=0.002 and P=0.007, respectively). The present results support the therapeutic use of hDPSCs for the treatment of full‑thickness articular cartilage defects.

References

1 

Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop Dj and Horwitz E: Minimal criteria for defining multipotent mesenchymal stromal cells. The international society for cellular therapy position statement. Cytotherapy. 8:315–317. 2006. View Article : Google Scholar : PubMed/NCBI

2 

Steadman JR, Briggs KK, Rodrigo JJ, Kocher MS, Gill TJ and Rodkey WG: Outcomes of microfracture for traumatic chondral defects of the knee: Average 11-year follow-up. Arthroscopy. 19:477–484. 2003. View Article : Google Scholar : PubMed/NCBI

3 

Knutsen G, Drogset JO, Engebretsen L, Grøntvedt T, Isaksen V, Ludvigsen TC, Roberts S, Solheim E, Strand T and Johansen O: A randomized trial comparing autologous chondrocyte implantation with microfracture. Findings at five years. J Bone Joint Surg Am. 89:2105–2112. 2007. View Article : Google Scholar : PubMed/NCBI

4 

Saw KY, Hussin P, Loke SC, Azam M, Chen HC, Tay YG, Low S, Wallin KL and Ragavanaidu K: Articular cartilage regeneration with autologous marrow aspirate and hyaluronic Acid: An experimental study in a goat model. Arthroscopy. 25:1391–1400. 2009. View Article : Google Scholar : PubMed/NCBI

5 

Chen WH, Lo WC, Hsu WC, Wei HJ, Liu HY, Lee CH, Tina Chen SY, Shieh YH, Williams DF and Deng WP: Synergistic anabolic actions of hyaluronic acid and platelet-rich plasma on cartilage regeneration in osteoarthritis therapy. Biomaterials. 35:9599–9607. 2014. View Article : Google Scholar : PubMed/NCBI

6 

Abate M, Verna S, Schiavone C, Di Gregorio P and Salini V: Efficacy and safety profile of a compound composed of platelet-rich plasma and hyaluronic acid in the treatment for knee osteoarthritis (preliminary results). Eur J Orthop Surg Traumatol. 25:1321–1326. 2015. View Article : Google Scholar : PubMed/NCBI

7 

Liu J, Yuan T and Zhang C: Effect of platelet-rich plasma on synovitis of rabbit knee. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 25:285–290. 2011.(In Chinese). PubMed/NCBI

8 

Gotterbarm T, Richter W, Jung M, Berardi Vilei S, Mainil-Varlet P, Yamashita T and Breusch SJ: An in vivo study of a growth-factor enhanced, cell free, two-layered collagen-tricalcium phosphate in deep osteochondral defects. Biomaterials. 27:3387–3395. 2006. View Article : Google Scholar : PubMed/NCBI

9 

Andia I, Sanchez M and Maffulli N: Basic science: Molecular and biological aspects of platelet-rich plasma therapies. Oper Tech Orthop. 22:3–9. 2012. View Article : Google Scholar

10 

Drengk A, Zapf A, Stürmer EK, Stürmer KM and Frosch KH: Influence of platelet-rich plasma on chondrogenic differentiation and proliferation of chondrocytes and mesenchymal stem cells. Cells Tissues Organs. 189:317–326. 2009. View Article : Google Scholar : PubMed/NCBI

11 

Mishra A, Tummala P, King A, Lee B, Kraus M, Tse V and Jacobs CR: Buffered platelet-rich plasma enhances mesenchymal stem cell proliferation and chondrogenic differentiation. Tissue Eng Part C Methods. 15:431–435. 2009. View Article : Google Scholar : PubMed/NCBI

12 

Akeda K, An HS, Okuma M, Attawia M, Miyamoto K, Thonar EJ, Lenz ME, Sah RL and Masuda K: Platelet-rich plasma stimulates porcine articular chondrocyte proliferation and matrix biosynthesis. Osteoarthritis Cartilage. 14:1272–1280. 2006. View Article : Google Scholar : PubMed/NCBI

13 

Koga H, Muneta T, Nagase T, Nimura A, Ju YJ, Mochizuki T and Sekiya I: Comparison of mesenchymal tissues-derived stem cells for in vivo chondrogenesis: Suitable conditions for cell therapy of cartilage defects in rabbit. Cell Tissue Res. 333:207–215. 2008. View Article : Google Scholar : PubMed/NCBI

14 

Ishizaka R, Hayashi Y, Iohara K, Sugiyama M, Murakami M, Yamamoto T, Fukuta O and Nakashima M: Stimulation of angiogenesis, neurogenesis and regeneration by side population cells from dental pulp. Biomaterials. 34:1888–1897. 2013. View Article : Google Scholar : PubMed/NCBI

15 

Daltoé FP, Mendonça PP, Mantesso A and Deboni MC: Can SHED or DPSCs be used to repair/regenerate non-dental tissues? A systematic review of in vivo studies. Braz Oral Res. 28:S1806–83242014000100401. 2014. View Article : Google Scholar

16 

Jesus AA, Soares MBP, Soares AP, Nogueira RC, Guimarães ET, Araújo TM and Santos RR: Collection and culture of stem cells derived from dental pulp of deciduous teeth: Technique and clinical case report. Dent Press J Orthodont. 16:82011.

17 

Sanchez O, Escobar JI and Yunis JJ: A simple G-banding technique. Lancet. 2:2691973. View Article : Google Scholar : PubMed/NCBI

18 

Brothman AR, Persons DL and Shaffer LG: Nomenclature evolution: Changes in the ISCN from the 2005 to the 2009 edition. Cytogenet Genome Res. 127:1–4. 2009. View Article : Google Scholar : PubMed/NCBI

19 

Mainil-Varlet P, Aigner T, Brittberg M, Bullough P, Hollander A, Hunziker E, Kandel R, Nehrer S, Pritzker K, Roberts S, et al: Histological assessment of cartilage repair: A report by the Histology Endpoint Committee of the international cartilage repair society (ICRS). J Bone Joint Surg Am 85-A. (Suppl 2):S45–S57. 2003. View Article : Google Scholar

20 

van den Borne MP, Raijmakers NJ, Vanlauwe J, Victor J, de Jong SN, Bellemans J and Saris DB; International Cartilage Repair Society, : International Cartilage Repair Society (ICRS) and Oswestry macroscopic cartilage evaluation scores validated for use in autologous chondrocyte implantation (ACI) and microfracture. Osteoarthritis Cartilage. 15:1397–1402. 2007. View Article : Google Scholar : PubMed/NCBI

21 

Bonasia DE, Marmotti A, Massa AD, Ferro A, Blonna D, Castoldi F and Rossi R: Intra- and inter-observer reliability of ten major histological scoring systems used for the evaluation of in vivo cartilage repair. Knee Surg Sports Traumatol Arthrosc. 23:2484–2493. 2015. View Article : Google Scholar : PubMed/NCBI

22 

Milano G, Sanna Passino E, Deriu L, Careddu G, Manunta L, Manunta A, Saccomanno MF and Fabbriciani C: The effect of platelet rich plasma combined with microfractures on the treatment of chondral defects: An experimental study in a sheep model. Osteoarthritis Cartilage. 18:971–980. 2010. View Article : Google Scholar : PubMed/NCBI

23 

Krenn V, Morawietz L, Burmester GR, Kinne RW, Mueller-Ladner U, Muller B and Haupl T: Synovitis score: Discrimination between chronic low-grade and high-grade synovitis. Histopathology. 49:358–364. 2006. View Article : Google Scholar : PubMed/NCBI

24 

Yan H and Yu C: Repair of full-thickness cartilage defects with cells of different origin in a rabbit model. Arthroscopy. 23:178–187. 2007. View Article : Google Scholar : PubMed/NCBI

25 

Lee KB, Hui JH, Song IC, Ardany L and Lee EH: Injectable mesenchymal stem cell therapy for large cartilage defects-a porcine model. Stem Cells. 25:2964–2971. 2007. View Article : Google Scholar : PubMed/NCBI

26 

Wakitani S, Goto T, Pineda SJ, Young RG, Mansour JM, Caplan AI and Goldberg VM: Mesenchymal cell-based repair of large, full-thickness defects of articular cartilage. J Bone Joint Surg Am. 76:579–592. 1994. View Article : Google Scholar : PubMed/NCBI

27 

Wakitani S, Imoto K, Yamamoto T, Saito M, Murata N and Yoneda M: Human autologous culture expanded bone marrow mesenchymal cell transplantation for repair of cartilage defects in osteoarthritic knees. Osteoarthritis Cartilage. 10:199–206. 2002. View Article : Google Scholar : PubMed/NCBI

28 

Shao XX, Hutmacher DW, Ho ST, Goh JC and Lee EH: Evaluation of a hybrid scaffold/cell construct in repair of high-load-bearing osteochondral defects in rabbits. Biomaterials. 27:1071–1080. 2006. View Article : Google Scholar : PubMed/NCBI

29 

Andia I, Sánchez M and Maffulli N: Joint pathology and platelet-rich plasma therapies. Expert Opin Biol Ther. 12:7–22. 2012. View Article : Google Scholar : PubMed/NCBI

30 

Olson SA, Horne P, Furman B, Huebner J, Al-Rashid M, Kraus VB and Guilak F: The role of cytokines in posttraumatic arthritis. J Am Acad Orthop Surg. 22:29–37. 2014. View Article : Google Scholar : PubMed/NCBI

31 

E X, Cao Y, Meng H, Qi Y, Du G, Xu J and Bi Z: Dendritic cells of synovium in experimental model of osteoarthritis of rabbits. Cell Physiol Biochem. 30:23–32. 2012. View Article : Google Scholar : PubMed/NCBI

32 

Lories RJ and Luyten FP: The bone-cartilage unit in osteoarthritis. Nat Rev Rheumatol. 7:43–49. 2011. View Article : Google Scholar : PubMed/NCBI

33 

Sakata R, McNary SM, Miyatake K, Lee CA, Van den Bogaerde JM, Marder RA and Reddi AH: Stimulation of the superficial zone protein and lubrication in the articular cartilage by human platelet-rich plasma. Am J Sports Med. 43:1467–1473. 2015. View Article : Google Scholar : PubMed/NCBI

34 

Ando W, Kutcher JJ, Krawetz R, Sen A, Nakamura N, Frank CB and Hart DA: Clonal analysis of synovial fluid stem cells to characterize and identify stable mesenchymal stromal cell/mesenchymal progenitor cell phenotypes in a porcine model: A cell source with enhanced commitment to the chondrogenic lineage. Cytotherapy. 16:776–788. 2014. View Article : Google Scholar : PubMed/NCBI

35 

Jones E and Crawford A: High chondrogenic potential of synovial fluid-derived mesenchymal stromal cells. Cytotherapy. 16:1595–1596. 2014. View Article : Google Scholar : PubMed/NCBI

36 

Rizk A and Rabie AB: Human dental pulp stem cells expressing transforming growth factor β3 transgene for cartilage-like tissue engineering. Cytotherapy. 15:712–725. 2013. View Article : Google Scholar : PubMed/NCBI

37 

Martin-Piedra MA, Garzon I, Oliveira AC, Alfonso-Rodriguez CA, Carriel V, Scionti G and Alaminos M: Cell viability and proliferation capability of long-term human dental pulp stem cell cultures. Cytotherapy. 16:266–277. 2014. View Article : Google Scholar : PubMed/NCBI

38 

Rubio-Azpeitia E and Andia I: Partnership between platelet-rich plasma and mesenchymal stem cells: In vitro experience. Muscles Ligaments Tendons J. 4:52–62. 2014. View Article : Google Scholar : PubMed/NCBI

39 

Abrams GD, Frank RM, Fortier LA and Cole BJ: Platelet-rich plasma for articular cartilage repair. Sports Med Arthrosc. 21:213–219. 2013. View Article : Google Scholar : PubMed/NCBI

40 

Boswell SG, Cole BJ, Sundman EA, Karas V and Fortier LA: Platelet-rich plasma: A milieu of bioactive factors. Arthroscopy. 28:429–439. 2012. View Article : Google Scholar : PubMed/NCBI

41 

Sundman EA, Cole BJ and Fortier LA: Growth factor and catabolic cytokine concentrations are influenced by the cellular composition of platelet-rich plasma. Am J Sports Med. 39:2135–2140. 2011. View Article : Google Scholar : PubMed/NCBI

42 

Carneiro Mde O, Barbieri CH and Barbieri Neto J: Platelet-rich plasma gel promotes regeneration of articular cartilage in knees of sheep. Acta Ortop Bras. 21:80–86. 2013.PubMed/NCBI

43 

Serra CI, Soler C, Carillo JM, Sopena JJ, Redondo JI and Cugat R: Effect of autologous platelet-rich plasma on the repair of full-thickness articular defects in rabbits. Knee Surg Sports Traumatol Arthrosc. 21:1730–1736. 2013.PubMed/NCBI

44 

Milano G, Deriu L, Sanna Passino E, Masala G, Manunta A, Postacchini R, Saccomanno MF and Fabbriciani C: Repeated platelet concentrate injections enhance reparative response of microfractures in the treatment of chondral defects of the knee: An experimental study in an animal model. Arthroscopy. 28:688–701. 2012. View Article : Google Scholar : PubMed/NCBI

45 

Dohan Ehrenfest DM, Bielecki T, Jimbo R, Barbé G, Del Corso M, Inchingolo F and Sammartino G: Do the fibrin architecture and leukocyte content influence the growth factor release of platelet concentrates? An evidence-based answer comparing a pure platelet-rich plasma (P-PRP) gel and a leukocyte- and platelet-rich fibrin (L-PRF). Curr Pharm Biotechnol. 13:1145–1152. 2012. View Article : Google Scholar : PubMed/NCBI

46 

Pot MW, Gonzales VK, Buma P, IntHout J, van Kuppevelt TH, de Vries RBM and Daamen WF: Improved cartilage regeneration by implantation of acellular biomaterials after bone marrow stimulation: A systematic review and meta-analysis of animal studies. PeerJ. 4:e22432016. View Article : Google Scholar : PubMed/NCBI

47 

Shapiro F, Koide S and Glimcher MJ: Cell origin and differentiation in the repair of full-thickness defects of articular cartilage. J Bone Joint Surg Am. 75:532–553. 1993. View Article : Google Scholar : PubMed/NCBI

48 

Wu JP, Kirk TB and Zheng MH: Study of the collagen structure in the superficial zone and physiological state of articular cartilage using a 3D confocal imaging technique. J Orthop Surg Res. 3:292008. View Article : Google Scholar : PubMed/NCBI

49 

Hollander AP, Dickinson SC and Kafienah W: Stem cells and cartilage development: Complexities of a simple tissue. Stem Cells. 28:1992–1996. 2010. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

June 2019
Volume 17 Issue 6

Print ISSN: 1792-0981
Online ISSN:1792-1015

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Yanasse, R.H., de Lábio, R.W., Marques, L., Fukasawa, J.T., Segato, R., Kinoshita, A. ... Payão, S.L. (2019). Xenotransplantation of human dental pulp stem cells in platelet‑rich plasma for the treatment of full‑thickness articular cartilage defects in a rabbit model. Experimental and Therapeutic Medicine, 17, 4344-4356. https://doi.org/10.3892/etm.2019.7499
MLA
Yanasse, R. H., de Lábio, R. W., Marques, L., Fukasawa, J. T., Segato, R., Kinoshita, A., Matsumoto, M. A., Felisbino, S. L., Solano, B., dos Santos, R. R., Payão, S. L."Xenotransplantation of human dental pulp stem cells in platelet‑rich plasma for the treatment of full‑thickness articular cartilage defects in a rabbit model". Experimental and Therapeutic Medicine 17.6 (2019): 4344-4356.
Chicago
Yanasse, R. H., de Lábio, R. W., Marques, L., Fukasawa, J. T., Segato, R., Kinoshita, A., Matsumoto, M. A., Felisbino, S. L., Solano, B., dos Santos, R. R., Payão, S. L."Xenotransplantation of human dental pulp stem cells in platelet‑rich plasma for the treatment of full‑thickness articular cartilage defects in a rabbit model". Experimental and Therapeutic Medicine 17, no. 6 (2019): 4344-4356. https://doi.org/10.3892/etm.2019.7499