Crim1 suppresses left ventricular hypertrophy

  • Authors:
    • Long Yang
    • Jionghong He
    • Guiling Xia
    • Jun Yang
    • Qian Tang
    • Yongyao Yang
    • Jiusheng Deng
  • View Affiliations

  • Published online on: May 17, 2019
  • Pages: 343-350
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Left ventricular hypertrophy is a leading cause of heart failure and sudden death. Cysteine‑rich transmembrane bone morphogenetic protein regulator 1 (Crim1) is expressed at a high level in the heart and has a regulatory role in heart development. The present study aimed to test the hypothesis that Crim1 can have an inhibitory function on ventricular hypertrophy. Rat primary ventricular myocytes were stretched to induce myocyte hypertrophy, and treated with telmisartan or infected with Crim1‑expressing recombinant adenovirus (Ad‑Crim1). Rat ventricular hypertrophy was induced by abdominal aortic coarctation (AAC), and treated either with telmisartan or myocardial injection of Ad‑Crim1 or empty adenovirus vector. The results showed that the expression of Crim1 decreased in the hypertrophic ventricle. The inhibition of angiotensin receptor type 1 (AT1R) by telmisartan in vitro and in vivo significantly increased the expression of Crim1 in the left ventricle. The overexpression of Crim1 by infection with Ad‑Crim1 significantly inhibited stretch‑induced ventricular myocyte hypertrophy in vitro. The overexpression of Crim1 by gavage with AT1R inhibitor telmisartan or myocardial injection of Ad‑Crim1 markedly suppressed AAC‑induced left ventricular hypertrophy in vivo. These results suggest that Crim1 has a suppressive function on ventricular hypertrophy and provides a novel therapeutic target for the treatment of cardiac hypertrophy.



Tham YK, Bernardo BC, Ooi JY, Weeks KL and McMullen JR: Pathophysiology of cardiac hypertrophy and heart failure: Signaling pathways and novel therapeutic targets. Arch Toxicol. 89:1401–1438. 2015.PubMed/NCBI View Article : Google Scholar


Soliman EZ and Prineas RJ: Antihypertensive therapies and left ventricular hypertrophy. Curr Hypertens Rep. 19(79)2017.PubMed/NCBI View Article : Google Scholar


Ikeda Y, Kumagai H, Motozawa Y, Suzuki J and Komuro I: Biased agonism of the angiotensin II type I receptor. Int Heart J. 56:485–488. 2015.PubMed/NCBI View Article : Google Scholar


Wang S, Gong H, Jiang G, Ye Y, Wu J, You J, Zhang G, Sun A, Komuro I, Ge J and Zou Y: Src is required for mechanical stretch-induced cardiomyocyte hypertrophy through angiotensin II type 1 receptor-dependent beta-arrestin2 pathways. PLoS One. 9(e92926)2014.PubMed/NCBI View Article : Google Scholar


Kolle G, Georgas K, Holmes GP, Little MH and Yamada T: CRIM1, a novel gene encoding a cysteine-rich repeat protein, is developmentally regulated and implicated in vertebrate CNS development and organogenesis. Mech Dev. 90:181–193. 2000.PubMed/NCBI View Article : Google Scholar


Glienke J, Sturz A, Menrad A and Thierauch KH: CRIM1 is involved in endothelial cell capillary formation in vitro and is expressed in blood vessels in vivo. Mec Dev. 119:165–175. 2002.PubMed/NCBI View Article : Google Scholar


Wilkinson L, Kolle G, Wen D, Piper M, Scott J and Little M: CRIM1 regulates the rate of processing and delivery of bone morphogenetic proteins to the cell surface. J Biol Chem. 278:34181–34188. 2003.PubMed/NCBI View Article : Google Scholar


Nakashima Y and Takahashi S: Induction of cysteine-rich motor neuron 1 mRNA expression in vascular endothelial cells. Biochem Biophys Res Commun. 451:235–238. 2014.PubMed/NCBI View Article : Google Scholar


Iyer S, Pennisi DJ and Piper M: Crim1-, a regulator of developmental organogenesis. Histol Histopathol. 31:1049–1057. 2016.PubMed/NCBI View Article : Google Scholar


Iyer S, Chou FY, Wang R, Chiu HS, Raju VK, Little MH, Thomas WG, Piper M and Pennisi DJ: Crim1 has cell-autonomous and paracrine roles during embryonic heart development. Sci Rep. 6(19832)2016.PubMed/NCBI View Article : Google Scholar


Pennisi DJ, Wilkinson L, Kolle G, Sohaskey ML, Gillinder K, Piper MJ, McAvoy JW, Lovicu FJ and Little MH: Crim1KST264/KST264 mice display a disruption of the Crim1 gene resulting in perinatal lethality with defects in multiple organ systems. Dev Dyn. 236:502–511. 2007.PubMed/NCBI View Article : Google Scholar


Chiu HS, York JP, Wilkinson L, Zhang P, Little MH and Pennisi DJ: Production of a mouse line with a conditional Crim1 mutant allele. Genesis. 50:711–716. 2012.PubMed/NCBI View Article : Google Scholar


Golden HB, Gollapudi D, Gerilechaogetu F, Li J, Cristales RJ, Peng X and Dostal DE: Isolation of cardiac myocytes and fibroblasts from neonatal rat pups. Methods Mol Biol. 843:205–214. 2012.PubMed/NCBI View Article : Google Scholar


Wang GJ, Yao YS and Wang HX: Comparing effects of U50488H, prazosin and/or propranolol on cardiac hypertrophy induced by NE in rat. Zhongguo Ying Yong Sheng Li Xue Za Zhi. 26:82–85. 2010.(In Chinese). PubMed/NCBI


Yang Y, Zhang H, Li X, Yang T and Jiang Q: Effects of PPARα/PGC-1α on the energy metabolism remodeling and apoptosis in the doxorubicin induced mice cardiomyocytes in vitro. Int J Clin Exp Pathol. 8:12216–12224. 2015.PubMed/NCBI


Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.PubMed/NCBI View Article : Google Scholar


Deng J, Pennati A, Cohen JB, Wu Y, Ng S, Wu JH, Flowers CR and Galipeau J: GIFT4 fusokine converts leukemic B cells into immune helper cells. J Transl Med. 14(106)2016.PubMed/NCBI View Article : Google Scholar


Huang J, Wang D, Zheng J, Huang X and Jin H: Hydrogen sulfide attenuates cardiac hypertrophy and fibrosis induced by abdominal aortic coarctation in rats. Mol Med Rep. 5:923–928. 2012.PubMed/NCBI View Article : Google Scholar


Sadoshima J, Xu Y, Slayter HS and Izumo S: Autocrine release of angiotensin II mediates stretch-induced hypertrophy of cardiac myocytes in vitro. Cell. 75:977–984. 1993.PubMed/NCBI


Arumugam S, Sreedhar R, Thandavarayan RA, Karuppagounder V, Krishnamurthy P, Suzuki K, Nakamura M and Watanabe K: Angiotensin receptor blockers: Focus on cardiac and renal injury. Trends Cardiovasc Med. 26:221–228. 2016.PubMed/NCBI View Article : Google Scholar


Wilkinson L, Gilbert T, Kinna G, Ruta LA, Pennisi D, Kett M and Little MH: Crim1KST264/KST264 mice implicate Crim1 in the regulation of vascular endothelial growth factor-A activity during glomerular vascular development. J Am Soc Nephrol. 18:1697–1708. 2017.PubMed/NCBI View Article : Google Scholar


Fan J, Ponferrada VG, Sato T, Vemaraju S, Fruttiger M, Gerhardt H, Ferrara N and Lang RA: Crim1 maintains retinal vascular stability during development by regulating endothelial cell Vegfa autocrine signaling. Development. 141:448–459. 2014.PubMed/NCBI View Article : Google Scholar


Sun B, Huo R, Sheng Y, Li Y, Xie X, Chen C, Liu HB, Li N, Li CB, Guo WT, et al: Bone morphogenetic protein-4 mediates cardiac hypertrophy, apoptosis, and fibrosis in experimentally pathological cardiac hypertrophy. Hypertension. 61:352–360. 2013.PubMed/NCBI View Article : Google Scholar


Sun B, Sheng Y, Huo R, Hu CW, Lu J, Li SL, Liu X, Wang YC and Dong DL: Bone morphogenetic protein-4 contributes to the down-regulation of Kv4.3 K+ channels in pathological cardiac hypertrophy. Biochem Biophys Res Commun. 436:591–594. 2013.PubMed/NCBI View Article : Google Scholar


Shahid M, Spagnolli E, Ernande L, Thoonen R, Kolodziej SA, Leyton PA, Cheng J, Tainsh RE, Mayeur C, Rhee DK, et al: BMP type I receptor ALK2 is required for angiotensin II-induced cardiac hypertrophy. Am J Physiol Heart Circ Physiol. 310:H984–H994. 2016.PubMed/NCBI View Article : Google Scholar


Izumiya Y, Shiojima I, Sato K, Sawyer DB, Colucci WS and Walsh K: Vascular endothelial growth factor blockade promotes the transition from compensatory cardiac hypertrophy to failure in response to pressure overload. Hypertension. 47:887–893. 2006.PubMed/NCBI View Article : Google Scholar


Ferrara N: Vascular endothelial growth factor. Arterioscler Thromb Vasc Biol. 29:789–791. 2009.PubMed/NCBI View Article : Google Scholar


Wilkinson L, Gilbert T, Sipos A, Toma I, Pennisi DJ, Peti-Peterdi J and Little MH: Loss of renal microvascular integrity in postnatal Crim1 hypomorphic transgenic mice. Kidney Int. 76:1161–1171. 2009.PubMed/NCBI View Article : Google Scholar


Zhang Y, Fan J, Ho JW, Hu T, Kneeland SC, Fan X, Xi Q, Sellarole MA, de Vries WN, Lu W, et al: Crim1 regulates integrin signaling in murine lens development. Development. 143:356–366. 2016.PubMed/NCBI View Article : Google Scholar


Ross RS and Borg TK: Integrins and the myocardium. Circ Res. 88:1112–1119. 2001.PubMed/NCBI


Israeli-Rosenberg S, Manso AM, Okada H and Ross RS: Integrins and integrin-associated proteins in the cardiac myocyte. Circ Res. 114:572–586. 2014.PubMed/NCBI View Article : Google Scholar


Takezako T, Unal H, Karnik SS and Node K: Current topics in angiotensin II type 1 receptor research: Focus on inverse agonism, receptor dimerization and biased agonism. Pharmacol Res. 123:40–50. 2017.PubMed/NCBI View Article : Google Scholar


Zou Y, Akazawa H, Qin Y, Sano M, Takano H, Minamino T, Makita N, Iwanaga K, Zhu W, Kudoh S, et al: Mechanical stress activates angiotensin II type 1 receptor without the involvement of angiotensin II. Nat Cell Biol. 6:499–506. 2004.PubMed/NCBI View Article : Google Scholar


Akazawa H and Komuro I: Mechanisms underlying angiotensin II-independent activation of angiotensin II type 1 receptor. Nihon Rinsho. 70:1492–1498. 2012.(In Japanese). PubMed/NCBI


Dargad RR, Parekh JD, Dargad RR and Kukrety S: Azilsartan: Novel angiotensin receptor blocker. J Assoc Physicians India. 64:96–98. 2016.PubMed/NCBI

Related Articles

Journal Cover

June 2019
Volume 10 Issue 6

Print ISSN: 2049-9434
Online ISSN:2049-9442

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
Yang, L., He, J., Xia, G., Yang, J., Tang, Q., Yang, Y., & Deng, J. (2019). Crim1 suppresses left ventricular hypertrophy. Biomedical Reports, 10, 343-350.
Yang, L., He, J., Xia, G., Yang, J., Tang, Q., Yang, Y., Deng, J."Crim1 suppresses left ventricular hypertrophy". Biomedical Reports 10.6 (2019): 343-350.
Yang, L., He, J., Xia, G., Yang, J., Tang, Q., Yang, Y., Deng, J."Crim1 suppresses left ventricular hypertrophy". Biomedical Reports 10, no. 6 (2019): 343-350.