Open Access

miRNA‑205‑5p functions as a tumor suppressor by negatively regulating VEGFA and PI3K/Akt/mTOR signaling in renal carcinoma cells

  • Authors:
    • Jianjun Huang
    • Xue Wang
    • Guobing Wen
    • Yu Ren
  • View Affiliations

  • Published online on: September 10, 2019     https://doi.org/10.3892/or.2019.7307
  • Pages: 1677-1688
  • Copyright: © Huang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

MicroRNAs (miRNAs) are involved in the development of various types of cancers. Dysregulation of miR‑205‑5p has been reported in various types of human cancer. However, little is known concerning the role of miR‑205‑5p in renal cell carcinoma (RCC). The pr~esent study was designed to investigate the role of miR‑205‑5p in RCC. The expression of miR‑205‑5p was measured in clear cell renal cell carcinoma (ccRCC) tissues and cell lines using RT‑qPCR. RCC cell lines were transfected with miR‑205‑5p mimics. CCK‑8 assays, wound healing assays, Matrigel invasion assays and nucleosome ELISAs were used to assess the effects of miR‑205‑5p on cell growth, migration, invasion and apoptosis, respectively. Western blotting was employed to detect changes in protein levels. Bioinformatic analyses and luciferase reporter assays were performed to identify the potential targets of miR‑205‑5p. Mouse xenograft models were used to verify the effect of miR‑205‑5p in vivo. The expression of miR‑205‑5p was found to be downregulated in 25 RCC tissues compared to that noted in the adjacent normal tissues. Decreased expression of miR‑205‑5p was associated with poor clinical outcomes. Based on the results of the in vitro experiments, overexpression of miR‑205‑5p reduced RCC cell proliferation, invasion and migration. Overexpression of miR‑205‑5p also promoted apoptosis and inhibited the EMT in RCC cells. Moreover, the PI3K/Akt signaling pathway was found to be negatively regulated by miR‑205‑5p. Bioinformatic analyses and luciferase reporter assays revealed that miR‑205‑5p directly targeted the 3'‑UTR of vascular endothelial growth factor A (VEGFA). Furthermore, miR‑205‑5p negatively regulated the expression of VEGFA in ccRCC cell lines. In ccRCC tissues, miR‑205‑5p expression was inversely correlated with VEGFA expression. Moreover, overexpression of miR‑205‑5p inhibited RCC growth in vivo in a mouse xenograft model. Overall, miR‑205‑5p functions as a tumor suppressor in RCC by targeting VEGFA and the PI3K/Akt signaling pathway, providing a potential therapeutic target for the treatment of ccRCC.

References

1 

van den Berg E and Dijkhuizen T: Classification of renal cell cancer based on (cyto)genetic analysis. Contrib Nephrol. 128:51–61. 1999. View Article : Google Scholar : PubMed/NCBI

2 

Capitanio U and Montorsi F: Renal cancer. Lancet. 387:894–906. 2016. View Article : Google Scholar : PubMed/NCBI

3 

Bartel DP: MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell. 116:281–297. 2004. View Article : Google Scholar : PubMed/NCBI

4 

Zimmerman AL and Wu S: MicroRNAs, cancer and cancer stem cells. Cancer Lett. 300:10–19. 2011. View Article : Google Scholar : PubMed/NCBI

5 

Tutar Y: miRNA and cancer; Computational and experimental approaches. Curr Pharm Biotechnol. 15:4292014. View Article : Google Scholar : PubMed/NCBI

6 

Calin GA and Croce CM: MicroRNA signatures in human cancers. Nat Rev Cancer. 6:857–866. 2006. View Article : Google Scholar : PubMed/NCBI

7 

Gulei D, Magdo L, Jurj A, Raduly L, Cojocneanu-Petric R, Moldovan A, Moldovan C, Florea A, Pasca S, Pop LA, et al: The silent healer: miR-205-5p up-regulation inhibits epithelial to mesenchymal transition in colon cancer cells by indirectly up-regulating E-cadherin expression. Cell Death Dis. 9:662018. View Article : Google Scholar : PubMed/NCBI

8 

Shao P, Qu WK, Wang CY, Tian Y, Ye ML, Sun DG, Sui JD, Wang LM, Fan R and Gao ZM: MicroRNA-205-5p regulates the chemotherapeutic resistance of hepatocellular carcinoma cells by targeting PTEN/JNK/ANXA3 pathway. Am J Transl Res. 9:4300–4307. 2017.PubMed/NCBI

9 

Yamada Y, Nishikawa R, Kato M, Okato A, Arai T, Kojima S, Yamazaki K, Naya Y, Ichikawa T and Seki N: Regulation of HMGB3 by antitumor miR-205-5p inhibits cancer cell aggressiveness and is involved in prostate cancer pathogenesis. J Hum Genet. 63:195–205. 2018. View Article : Google Scholar : PubMed/NCBI

10 

Li L and Li S: miR-205-5p inhibits cell migration and invasion in prostatic carcinoma by targeting ZEB1. Oncol Lett. 16:1715–1721. 2018.PubMed/NCBI

11 

Shi X, Xiao L, Mao X, He J, Ding Y, Huang J, Peng C and Xu Z: miR-205-5p mediated downregulation of PTEN contributes to cisplatin resistance in C13K human ovarian cancer cells. Front Genet. 9:5552018. View Article : Google Scholar : PubMed/NCBI

12 

Edge SB and Compton CC: The American joint committee on cancer: The 7th edition of the AJCC cancer staging manual and the future of TNM. Ann Surg Oncol. 17:1471–1474. 2010. View Article : Google Scholar : PubMed/NCBI

13 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods. 25:402–408. 2001. View Article : Google Scholar : PubMed/NCBI

14 

Gonzalez DM and Medici D: Signaling mechanisms of the epithelial-mesenchymal transition. Sci Signal. 7:re82014. View Article : Google Scholar : PubMed/NCBI

15 

Rodriguez-Vida A, Hutson TE, Bellmunt J and Strijbos MH: New treatment options for metastatic renal cell carcinoma. ESMO Open. 2:e0001852017. View Article : Google Scholar : PubMed/NCBI

16 

Duran I, Lambea J, Maroto P, González-Larriba JL, Flores L, Granados-Principal S, Graupera M, Sáez B, Vivancos A and Casanovas O: Resistance to targeted therapies in renal cancer: The importance of changing the mechanism of action. Target Oncol. 12:19–35. 2017. View Article : Google Scholar : PubMed/NCBI

17 

Yu R, Yu BX, Chen JF, Lv XY, Yan ZJ, Cheng Y and Ma Q: Anti-tumor effects of Atractylenolide I on bladder cancer cells. J Exp Clin Cancer Res. 35:402016. View Article : Google Scholar : PubMed/NCBI

18 

Wang C, Cai L, Liu J, Wang G, Li H, Wang X, Xu W, Ren M, Feng L, Liu P, et al: MicroRNA-30a-5p inhibits the growth of renal cell carcinoma by modulating GRP78 expression. Cell Physiol Biochem. 43:2405–2419. 2017. View Article : Google Scholar : PubMed/NCBI

19 

Bhat NS, Colden M, Dar AA, Saini S, Arora P, Shahryari V, Yamamura S, Tanaka Y, Kato T, Majid S, et al: MicroRNA-720 regulates E-cadherin-αE-catenin complex and promotes renal cell carcinoma. Mol Cancer Ther. 16:2840–2848. 2017. View Article : Google Scholar : PubMed/NCBI

20 

Liu W, Li H, Wang Y, Zhao X, Guo Y, Jin J and Chi R: MiR-30b-5p functions as a tumor suppressor in cell proliferation, metastasis and epithelial-to-mesenchymal transition by targeting G-protein subunit α−13 in renal cell carcinoma. Gene. 626:275–281. 2017. View Article : Google Scholar : PubMed/NCBI

21 

Nagai H, Hasegawa S, Uchida F, Terabe T, Ishibashi Kanno N, Kato K, Yamagata K, Sakai S, Kawashiri S, et al: MicroRNA-205-5p suppresses the invasiveness of oral squamous cell carcinoma by inhibiting TIMP2 expression. Int J Oncol. 52:841–850. 2018.PubMed/NCBI

22 

Jiang M, Zhong T, Zhang W, Xiao Z, Hu G, Zhou H and Kuang H: Reduced expression of miR-205-5p promotes apoptosis and inhibits proliferation and invasion in lung cancer A549 cells by upregulation of ZEB2 and downregulation of erbB3. Mol Med Rep. 15:3231–3238. 2017. View Article : Google Scholar : PubMed/NCBI

23 

Fulda S: Therapeutic opportunities based on caspase modulation. Semin Cell Dev Biol. 82:150–157. 2018. View Article : Google Scholar : PubMed/NCBI

24 

Kale J, Osterlund EJ and Andrews DW: BCL-2 family proteins: Changing partners in the dance towards death. Cell Death Differ. 25:65–80. 2018. View Article : Google Scholar : PubMed/NCBI

25 

Dahmke IN, Backes C, Rudzitis-Auth J, Laschke MW, Leidinger P, Menger MD, Meese E and Mahlknecht U: Curcumin intake affects miRNA signature in murine melanoma with mmu-miR-205-5p most significantly altered. PLoS One. 8:e811222013. View Article : Google Scholar : PubMed/NCBI

26 

Brabletz T: EMT and MET in metastasis: Where are the cancer stem cells? Cancer Cell. 22:699–701. 2012. View Article : Google Scholar : PubMed/NCBI

27 

Brabletz T, Kalluri R, Nieto MA and Weinberg RA: EMT in cancer. Nat Rev Cancer. 18:128–134. 2018. View Article : Google Scholar : PubMed/NCBI

28 

Kraljevic Pavelic S, Sedic M, Bosnjak H, Spaventi S and Pavelic K: Metastasis: New perspectives on an old problem. Mol Cancer. 10:222011. View Article : Google Scholar : PubMed/NCBI

29 

Elgamal OA, Park JK, Gusev Y, Azevedo-Pouly AC, Jiang J, Roopra A and Schmittgen TD: Tumor suppressive function of mir-205 in breast cancer is linked to HMGB3 regulation. PLoS One. 8:e764022013. View Article : Google Scholar : PubMed/NCBI

30 

LoRusso PM: Inhibition of the PI3K/AKT/mTOR pathway in solid tumors. J Clin Oncol. 34:3803–3815. 2016. View Article : Google Scholar : PubMed/NCBI

31 

Akbani R, Ng PK, Werner HM, Shahmoradgoli M, Zhang F, Ju Z, Liu W, Yang JY, Yoshihara K, Li J, et al: A pan-cancer proteomic perspective on The Cancer Genome Atlas. Nat Commun. 5:38872014. View Article : Google Scholar : PubMed/NCBI

32 

Porta C, Paglino C and Mosca A: Targeting PI3K/Akt/mTOR signaling in cancer. Front Oncol. 4:642014. View Article : Google Scholar : PubMed/NCBI

33 

Xu X, Wu J, Li S, Hu Z, Xu X, Zhu Y, Liang Z, Wang X, Lin Y, Mao Y, et al: Downregulation of microRNA-182-5p contributes to renal cell carcinoma proliferation via activating the AKT/FOXO3a signaling pathway. Mol Cancer. 13:1092014. View Article : Google Scholar : PubMed/NCBI

34 

Lian JH, Wang WH, Wang JQ, Zhang YH and Li Y: MicroRNA-122 promotes proliferation, invasion and migration of renal cell carcinoma cells through the PI3K/Akt signaling pathway. Asian Pac J Cancer Prev. 14:5017–5021. 2013. View Article : Google Scholar : PubMed/NCBI

35 

Ruan GX and Kazlauskas A: Axl is essential for VEGF-A-dependent activation of PI3K/Akt. EMBO J. 31:1692–1703. 2012. View Article : Google Scholar : PubMed/NCBI

36 

Chen CH, Lai JM, Chou TY, Chen CY, Su LJ, Lee YC, Cheng TS, Hong YR, Chou CK, Whang-Peng J, et al: VEGFA upregulates FLJ10540 and modulates migration and invasion of lung cancer via PI3K/AKT pathway. PLoS One. 4:e50522009. View Article : Google Scholar : PubMed/NCBI

37 

Vachhani P and George S: VEGF inhibitors in renal cell carcinoma. Clin Adv Hematol Oncol. 14:1016–1028. 2016.PubMed/NCBI

38 

Comunanza V and Bussolino F: Therapy for cancer: Strategy of combining anti-angiogenic and target therapies. Front Cell Dev Biol. 5:1012017. View Article : Google Scholar : PubMed/NCBI

39 

An G, Liang S, Sheng C, Liu Y and Yao W: Upregulation of microRNA-205 suppresses vascular endothelial growth factor expression-mediated PI3K/Akt signaling transduction in human keloid fibroblasts. Exp Biol Med. 242:275–285. 2017. View Article : Google Scholar

40 

Zeng FC, Zeng MQ, Huang L, Li YL, Gao BM, Chen JJ, Xue RZ and Tang ZY: Downregulation of VEGFA inhibits proliferation, promotes apoptosis, and suppresses migration and invasion of renal clear cell carcinoma. Onco Targets Ther. 9:2131–2141. 2016.PubMed/NCBI

41 

Chen YS, Meng F, Li HL, Liu QH, Hou PF, Bai J and Zheng JN: Dicer suppresses MMP-2-mediated invasion and VEGFA-induced angiogenesis and serves as a promising prognostic biomarker in human clear cell renal cell carcinoma. Oncotarget. 7:84299–84313. 2016.PubMed/NCBI

42 

Fantozzi A, Gruber DC, Pisarsky L, Heck C, Kunita A, Yilmaz M, Meyer-Schaller N, Cornille K, Hopfer U, Bentires-Alj M and Christofori G: VEGF-mediated angiogenesis links EMT-induced cancer stemness to tumor initiation. Cancer Res. 74:1566–1575. 2014. View Article : Google Scholar : PubMed/NCBI

43 

Gonzalez-Moreno O, Lecanda J, Green JE, Segura V, Catena R, Serrano D and Calvo A: VEGF elicits epithelial-mesenchymal transition (EMT) in prostate intraepithelial neoplasia (PIN)-like cells via an autocrine loop. Exp Cell Res. 316:554–567. 2010. View Article : Google Scholar : PubMed/NCBI

44 

Kim LC, Cook RS and Chen J: mTORC1 and mTORC2 in cancer and the tumor microenvironment. Oncogene. 36:2191–2201. 2017. View Article : Google Scholar : PubMed/NCBI

45 

Besharat ZM, Sabato C, Po A, Gianno F, Abballe L, Napolitano M, Miele E, Giangaspero F, Vacca A, Catanzaro G, et al: Low expression of miR-466f-3p sustains epithelial to mesenchymal transition in Sonic hedgehog medulloblastoma stem cells through Vegfa-Nrp2 signaling pathway. Front Pharmacol. 9:12812018. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

November 2019
Volume 42 Issue 5

Print ISSN: 1021-335X
Online ISSN:1791-2431

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Huang, J., Wang, X., Wen, G., & Ren, Y. (2019). miRNA‑205‑5p functions as a tumor suppressor by negatively regulating VEGFA and PI3K/Akt/mTOR signaling in renal carcinoma cells. Oncology Reports, 42, 1677-1688. https://doi.org/10.3892/or.2019.7307
MLA
Huang, J., Wang, X., Wen, G., Ren, Y."miRNA‑205‑5p functions as a tumor suppressor by negatively regulating VEGFA and PI3K/Akt/mTOR signaling in renal carcinoma cells". Oncology Reports 42.5 (2019): 1677-1688.
Chicago
Huang, J., Wang, X., Wen, G., Ren, Y."miRNA‑205‑5p functions as a tumor suppressor by negatively regulating VEGFA and PI3K/Akt/mTOR signaling in renal carcinoma cells". Oncology Reports 42, no. 5 (2019): 1677-1688. https://doi.org/10.3892/or.2019.7307