Long non‑coding RNA00887 reduces the invasion and metastasis of non‑small cell lung cancer by causing the degradation of miRNAs

  • Authors:
    • Yingxuan Tian
    • Min Yu
    • Li Sun
    • Linghua Liu
    • Shufen Huo
    • Wenli Shang
    • Sen Sheng
    • Jun Wang
    • Jingying Sun
    • Qiaoxia Hu
    • Yawei Dou
    • Jianfei Zhu
    • Xiaoping Ren
    • Shuanying Yang
  • View Affiliations

  • Published online on: July 11, 2019     https://doi.org/10.3892/or.2019.7228
  • Pages: 1173-1182
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Long non‑coding RNAs (lncRNAs) can act as carcinogenic or cancer suppressive factors during the pathogenesis, invasion and metastasis of non‑small cell lung cancer (NSCLC). The current study explored the role of long intergenic non‑protein coding RNA 00887 (LINC00887) and competing endogenous RNAs (ceRNAs). It was revealed that LINC00887 interacts with several microRNAs (miRs), which regulates downstream genes such as fibronectin 1, MET proto‑oncogene, receptor tyrosine kinase and mothers against decapentaplegic homolog 4, which are associated with the spread of lung cancer. The experimental results also suggested that LINC00887 can stimulate miR‑613, miR‑206 and miR‑1‑2 to become competing endogenous RNAs, which may regulate the epithelial‑mesenchymal transition of NSCLC cells through the transforming growth factor‑â signal transduction pathway, and therefore promote the migration of cells and the acquisition of stem cell characteristics. Therefore, it can be concluded that high levels of LINC00887 can accelerate the malignant transformation ability of NSCLC cells.

References

1 

Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J and Jemal A: Global cancer statistics, 2012. CA Cancer J Clin. 65:87–108. 2015. View Article : Google Scholar : PubMed/NCBI

2 

Hashim D, Boffetta P, La Vecchia C, Rota M, Bertuccio P, Malvezzi M and Negri E: The global decrease in cancer mortality: Trends and disparities. Ann Oncol. 27:926–933. 2016. View Article : Google Scholar : PubMed/NCBI

3 

Wang L, Yu C, Liu Y, Wang J, Li C, Wang Q, Wang P, Wu S and Zhang ZJ: Lung cancer mortality trends in China from 1988 to 2013: New challenges and opportunities for the government. Int J Environ Res Public Health. 13:E10522016. View Article : Google Scholar : PubMed/NCBI

4 

Stratton MR, Campbell PJ and Futreal PA: The cancer genome. Nature. 458:719–724. 2009. View Article : Google Scholar : PubMed/NCBI

5 

Ansari J, Yun JW, Kompelli AR, Moufarrej YE, Alexander JS, Herrera GA, Herrera GA and Shackelford RE: The liquid biopsy in lung cancer. Genes Cancer. 7:355–367. 2016.PubMed/NCBI

6 

MacConaill LE and Garraway LA: Clinical implications of the cancer genome. J Clin Oncol. 28:5219–5228. 2010. View Article : Google Scholar : PubMed/NCBI

7 

Ponting CP, Oliver PL and Reik W: Evolution and functions of long noncoding RNAs. Cell. 136:629–641. 2009. View Article : Google Scholar : PubMed/NCBI

8 

Tsai MC, Manor O, Wan Y, Mosammaparast N, Wang JK, Lan F, Shi Y, Segal E and Chang HY: Long noncoding RNA as modular scaffold of histone modification complexes. Science. 329:689–693. 2010. View Article : Google Scholar : PubMed/NCBI

9 

Prensner JR, Iyer MK, Balbin OA, Dhanasekaran SM, Cao Q, Brenner JC, Laxman B, Asangani IA, Grasso CS, Kominsky HD, et al: Transcriptome sequencing across a prostate cancer cohort identifies PCAT-1, an unannotated lincRNA implicated in disease progression. Nat Biotechnol. 29:742–749. 2011. View Article : Google Scholar : PubMed/NCBI

10 

Gibb EA, Brown CJ and Lam WL: The functional role of long non-coding RNA in human carcinomas. Mol Cancer. 10:382011. View Article : Google Scholar : PubMed/NCBI

11 

Braconi C, Valeri N, Kogure T, Gasparini P, Huang N, Nuovo GJ, Terracciano L, Croce CM and Patel T: Expression and functional role of a transcribed noncoding RNA with an ultraconserved element in hepatocellular carcinoma. Proc Natl Acad Sci USA. 108:786–791. 2011. View Article : Google Scholar : PubMed/NCBI

12 

Mourtada-Maarabouni M, Pickard MR, Hedge VL, Farzaneh F and Williams GT: GAS5, a non-protein-coding RNA, controls apoptosis and is downregulated in breast cancer. Oncogene. 28:195–208. 2009. View Article : Google Scholar : PubMed/NCBI

13 

Huarte M, Guttman M, Feldser D, Garber M, Koziol MJ, Kenzelmann-Broz D, Khalil AM, Zuk O, Amit I, Rabani M, et al: A large intergenic noncoding RNA induced by p53 mediates global gene repression in the p53 response. Cell. 142:409–419. 2010. View Article : Google Scholar : PubMed/NCBI

14 

Zhang X, Gejman R, Mahta A, Zhong Y, Rice KA, Zhou Y, Cheunsuchon P, Louis DN and Klibanski A: Maternally expressed gene 3, an imprinted noncoding RNA gene, is associated with meningioma pathogenesis and progression. Cancer Res. 70:2350–2358. 2010. View Article : Google Scholar : PubMed/NCBI

15 

Poliseno L, Salmena L, Zhang J, Carver B, Haveman WJ and Pandolfi PP: A coding-independent function of gene and pseudogene mRNAs regulates tumour biology. Nature. 465:1033–1038. 2010. View Article : Google Scholar : PubMed/NCBI

16 

Hao Y, Yang X, Zhang D, Luo J and Chen R: Long noncoding RNA LINC01186, regulated by TGF-β/SMAD3, inhibits migration and invasion through Epithelial-Mesenchymal-Transition in lung cancer. Gene. 608:1–12. 2017. View Article : Google Scholar : PubMed/NCBI

17 

Yang C, Li X, Wang Y, Zhao L and Chen W: Long non-coding RNA UCA1 regulated cell cycle distribution via CREB through PI3-K dependent pathway in bladder carcinoma cells. Gene. 496:8–16. 2012. View Article : Google Scholar : PubMed/NCBI

18 

Wang JZ, Xiang JJ, Wu LG, Bai YS, Chen ZW, Yin XQ, Wang Q, Guo WH, Peng Y, Guo H and Xu P: A genetic variant in long non-coding RNA MALAT1 associated with survival outcome among patients with advanced lung adenocarcinoma: A survival cohort analysis. BMC Cancer. 17:1672017. View Article : Google Scholar : PubMed/NCBI

19 

Salmena L, Poliseno L, Tay Y, Kats L and Pandolfi PP: A ceRNA Hypothesis: The Rosetta stone of a hidden RNA language? Cell. 146:353–358. 2011. View Article : Google Scholar : PubMed/NCBI

20 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001. View Article : Google Scholar : PubMed/NCBI

21 

Thomson DW and Dinger ME: Endogenous microRNA sponges: Evidence and controversy. Nat Rev Genet. 17:272–283. 2016. View Article : Google Scholar : PubMed/NCBI

22 

Venables JP, Klinck R, Koh C, Gervais-Bird J, Bramard A, Inkel L, Durand M, Couture S, Froehlich U, Lapointe E, et al: Cancer-associated regulation of alternative splicing. Nat Struct Mol Biol. 16:670–676. 2009. View Article : Google Scholar : PubMed/NCBI

23 

Wang SH, Zhang WJ, Wu XC, Zhang MD, Weng MZ, Zhou D, Wang JD and Quan ZW: Long non-coding RNA Malat1 promotes gallbladder cancer development by acting as a molecular sponge to regulate miR-206. Oncotarget. 7:37857–37867. 2016.PubMed/NCBI

24 

Popper HH: Progression and metastasis of lung cancer. Cancer Metastasis Rev. 35:75–91. 2016. View Article : Google Scholar : PubMed/NCBI

25 

Decaussin M, Sartelet H, Robert C, Moro D, Claraz C, Brambilla C and Brambilla E: Expression of vascular endothelial growth factor (VEGF) and its two receptors (VEGF-R1-Flt1 and VEGF-R2-Flk1/KDR) in non-small cell lung carcinomas (NSCLCs): Correlation with angiogenesis and survival. J Pathol. 188:369–377. 1999. View Article : Google Scholar : PubMed/NCBI

26 

Suzuki K, Sun R, Origuchi M, Kanehira M, Takahata T, Itoh J, Umezawa A, Kijima H, Fukuda S and Saijo Y: Mesenchymal stromal cells promote tumor growth through the enhancement of neovascularization. Mol Med. 17:579–587. 2011. View Article : Google Scholar : PubMed/NCBI

27 

Xiang R, Luo Y, Niethammer AG and Reisfeld RA: Oral DNA vaccines target the tumor vasculature and microenvironment and suppress tumor growth and metastasis. Immunol Rev. 222:117–128. 2008. View Article : Google Scholar : PubMed/NCBI

28 

Jiang C, Li X, Zhao H and Liu H: Long non-coding RNAs: Potential new biomarkers for predicting tumor invasion and metastasis. Mol Cancer. 15:622016. View Article : Google Scholar : PubMed/NCBI

29 

Rokavec M, Horst D and Hermeking H: Cellular model of colon cancer progression reveals signatures of mRNAs, miRNA, lncRNAs, and epigenetic modifications associated with metastasis. Cancer Res. 77:1854–1867. 2017. View Article : Google Scholar : PubMed/NCBI

30 

Zhang X, Xu J, Wang J, Gortner L, Zhang S, Wei X, Song J, Zhang Y, Li Q and Feng Z: Reduction of MicroRNA-206 contributes to the development of bronchopulmonary dysplasia through up-regulation of fibronectin 1. PLoS One. 8:e747502013. View Article : Google Scholar : PubMed/NCBI

31 

Yen CY, Huang CY, Hou MF, Yang YH, Chang CH, Huang HW, Chen CH and Chang HW: Evaluating the performance of fibronectin 1 (FN1), integrin α4β1 (ITGA4), syndecan-2 (SDC2), and glycoprotein CD44 as the potential biomarkers of oral squamous cell carcinoma (OSCC). Biomarkers. 18:63–72. 2013. View Article : Google Scholar : PubMed/NCBI

32 

Duan J, Zhang X, Zhang S, Hua S and Feng Z: miR-206 inhibits FN1 expression and proliferation and promotes apoptosis of rat type II alveolar epithelial cells. Exp Ther Med. 13:3203–3208. 2017. View Article : Google Scholar : PubMed/NCBI

33 

Nasser MW, Datta J, Nuovo G, Kutay H, Motiwala T, Majumder S, Wang B, Suster S, Jacob ST and Ghoshal K: Downregulation of Micro-RNA-1 (miR-1) in lung cancer. Suppression of tumorigenic property of lung cancer cells and their sensitization to doxorubicin-induced apoptosis by miR-1. J Biol Chem. 283:33394–33405. 2008. View Article : Google Scholar : PubMed/NCBI

34 

Grelet S, McShane A, Geslain R and Howe PH: Pleiotropic roles of non-coding RNAs in TGF-β-mediated epithelial-mesenchymal transition and their functions in tumor progression. Cancers (Basel). 9(pii): E752017. View Article : Google Scholar : PubMed/NCBI

35 

Lamouille S, Xu J and Derynck R: Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol. 15:178–196. 2014. View Article : Google Scholar : PubMed/NCBI

36 

Moustakas A and Heldin CH: Mechanisms of TGF-β-induced epithelial-mesenchymal transition. J Clin Med. 5:E632016. View Article : Google Scholar : PubMed/NCBI

37 

Lee JK, Joo KM, Lee J, Yoon Y and Nam DH: Targeting the epithelial to mesenchymal transition in glioblastoma: The emerging role of fMET signaling. Onco Targets Ther. 7:1933–1944. 2014.PubMed/NCBI

Related Articles

Journal Cover

September 2019
Volume 42 Issue 3

Print ISSN: 1021-335X
Online ISSN:1791-2431

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Tian, Y., Yu, M., Sun, L., Liu, L., Huo, S., Shang, W. ... Yang, S. (2019). Long non‑coding RNA00887 reduces the invasion and metastasis of non‑small cell lung cancer by causing the degradation of miRNAs. Oncology Reports, 42, 1173-1182. https://doi.org/10.3892/or.2019.7228
MLA
Tian, Y., Yu, M., Sun, L., Liu, L., Huo, S., Shang, W., Sheng, S., Wang, J., Sun, J., Hu, Q., Dou, Y., Zhu, J., Ren, X., Yang, S."Long non‑coding RNA00887 reduces the invasion and metastasis of non‑small cell lung cancer by causing the degradation of miRNAs". Oncology Reports 42.3 (2019): 1173-1182.
Chicago
Tian, Y., Yu, M., Sun, L., Liu, L., Huo, S., Shang, W., Sheng, S., Wang, J., Sun, J., Hu, Q., Dou, Y., Zhu, J., Ren, X., Yang, S."Long non‑coding RNA00887 reduces the invasion and metastasis of non‑small cell lung cancer by causing the degradation of miRNAs". Oncology Reports 42, no. 3 (2019): 1173-1182. https://doi.org/10.3892/or.2019.7228