miR‑92a contributes to cell proliferation, apoptosis and doxorubicin chemosensitivity in gastric carcinoma cells

  • Authors:
    • Xuan‑Chen Tao
    • Xin‑Yu Zhang
    • Shi‑Bo Sun
    • De‑Quan Wu
  • View Affiliations

  • Published online on: May 23, 2019     https://doi.org/10.3892/or.2019.7168
  • Pages: 313-320
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

MicroRNAs (miRNAs) are a class of short noncoding RNAs that negatively regulate gene expression and act as oncogenes or tumor suppressors. Numerous miRNAs have been reported be associated with the occurrence and development of gastric carcinoma (GC). For instance, miR‑92a has been observed to be overexpressed in GC; however, the precise mechanisms underlying the role of miR‑92a in GC and its role in clinical therapy require further investigation. In the present study, it was reported that miR‑92a expression was significantly upregulated in GC tissues compared with in adjacent tissues. Additionally, suppression of miR‑92a significantly reduced SGC7901 cell viability as demonstrated by a Cell Counting Kit‑8 and colony formation assays. Suppression of miR‑92a inhibited SGC7901 cell proliferation as determined by Ki‑67 immunofluorescence staining, and the expression levels of proliferating cell nuclear antigen, cyclin dependent kinase (CDK)4 and CDK6, and increased that of p53. In addition, we reported that suppression of miR‑92a induced apoptosis in SGC7901 cells. Furthermore, bioinformatics analysis identified that ING2 as a potential target of miR‑92a. Downregulation of miR‑92a significantly increased ING2 expression at the mRNA and protein levels. A dual‑luciferase reporter assay validated a direct binding site of miR‑92a on ING2. In addition, SGC7901 cells with suppression of miR‑92a were more sensitive to doxorubicin treatment. Knockdown of miR‑92a reduced the half‑maximal inhibitory concentration of doxorubicin from 147.6 nM to 82.1 nM in SGC7901 cells. Knockdown of miR‑92a also reduced SGC7901 cell survival under doxorubicin stimulation. Furthermore, SGC7901 cells with suppression of miR‑92a harbored a greater number of DNA damage foci upon doxorubicin treatment compared with in control cells. The findings of the present study revealed that miR‑92a contributes to cell proliferation, apoptosis and doxorubicin chemosensitivity in GC cells, which suggests a potential therapeutic strategy for the treatment of GC.

References

1 

Yuasa Y: Control of gut differentiation and intestinal-type gastric carcinogenesis. Nat Rev Cancer. 3:592–600. 2003. View Article : Google Scholar : PubMed/NCBI

2 

Panani AD: Cytogenetic and molecular aspects of gastric cancer: Clinical implications. Cancer Lett. 266:99–115. 2008. View Article : Google Scholar : PubMed/NCBI

3 

Coburn N, Cosby R, Klein L, Knight G, Malthaner R, Mamazza J, Mercer CD and Ringash J: Staging and surgical approaches in gastric cancer: A systematic review. Cancer Treat Rev. 63:104–115. 2018. View Article : Google Scholar : PubMed/NCBI

4 

Luo X, Yang B and Nattel S: MicroRNAs and atrial fibrillation: Mechanisms and translational potential. Nat Rev Cardiol. 12:80–90. 2015. View Article : Google Scholar : PubMed/NCBI

5 

Frampton AE, Castellano L, Colombo T, Giovannetti E, Krell J, Jacob J, Pellegrino L, Roca-Alonso L, Funel N, Gall TM, et al: MicroRNAs cooperatively inhibit a network of tumor suppressor genes to promote pancreatic tumor growth and progression. Gastroenterology. 146:268–277. 2014. View Article : Google Scholar : PubMed/NCBI

6 

Emmrich S, Katsman-Kuipers JE, Henke K, Khatib ME, Jammal R, Engeland F, Dasci F, Zwaan CM, den Boer ML, Verboon L, et al: miR-9 is a tumor suppressor in pediatric AML with t(8;21). Leukemia. 28:1022–1032. 2014. View Article : Google Scholar : PubMed/NCBI

7 

Zhang HH, Gu GL, Zhang XY, Li FZ, Ding L, Fan Q, Wu R, Shi W, Wang XY, Chen L, et al: Primary analysis and screening of microRNAs in gastric cancer side population cells. World J Gastroenterol. 21:3519–3526. 2015. View Article : Google Scholar : PubMed/NCBI

8 

Chen Z, Saad R, Jia P, Peng D, Zhu S, Washington MK, Zhao Z, Xu Z and El-Rifai W: Gastric adenocarcinoma has a unique microRNA signature not present in esophageal adenocarcinoma. Cancer. 119:1985–1993. 2013. View Article : Google Scholar : PubMed/NCBI

9 

Guo B, Liu L, Yao J, Ma R, Chang D, Li Z, Song T and Huang C: miR-338-3p suppresses gastric cancer progression through a PTEN-AKT axis by targeting P-REX2a. Mol Cancer Res. 12:313–321. 2014. View Article : Google Scholar : PubMed/NCBI

10 

Wang F, Li T, Zhang B, Li H, Wu Q, Yang L, Nie Y, Wu K, Shi Y and Fan D: MicroRNA-19a/b regulates multidrug resistance in human gastric cancer cells by targeting PTEN. Biochem Biophys Res Commun. 434:688–694. 2013. View Article : Google Scholar : PubMed/NCBI

11 

Si Y, Zhang H, Ning T, Bai M, Wang Y, Yang H, Wang X, Li J, Ying G and Ba Y: miR-26a/b inhibit tumor growth and angiogenesis by targeting the HGF-VEGF axis in gastric carcinoma. Cell Physiol Biochem. 42:1670–1683. 2017. View Article : Google Scholar : PubMed/NCBI

12 

Zhang Y, Lu Q and Cai X: MicroRNA-106a induces multidrug resistance in gastric cancer by targeting RUNX3. FEBS Lett. 587:3069–3075. 2013. View Article : Google Scholar : PubMed/NCBI

13 

Tsujiura M, Komatsu S, Ichikawa D, Shiozaki A, Konishi H, Takeshita H, Moriumura R, Nagata H, Kawaguchi T, Hirajima S, et al: Circulating miR-18a in plasma contributes to cancer detection and monitoring in patients with gastric cancer. Gastric Cancer. 18:271–279. 2015. View Article : Google Scholar : PubMed/NCBI

14 

Ren C, Wang W, Han C, Chen H, Fu D, Luo Y, Yao H, Wang D, Ma L, Zhou L, et al: Expression and prognostic value of miR-92a in patients with gastric cancer. Tumour Biol. 37:9483–9491. 2016. View Article : Google Scholar : PubMed/NCBI

15 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001. View Article : Google Scholar : PubMed/NCBI

16 

Thomson DW, Bracken CP and Goodall GJ: Experimental strategies for microRNA target identification. Nucleic Acids Res. 39:6845–6853. 2011. View Article : Google Scholar : PubMed/NCBI

17 

Pernot S, Voron T, Perkins G, Lagorce-Pages C, Berger A and Taieb J: Signet-ring cell carcinoma of the stomach: Impact on prognosis and specific therapeutic challenge. World J Gastroenterol. 21:11428–11438. 2015. View Article : Google Scholar : PubMed/NCBI

18 

Singh SS, Yap WN, Arfuso F, Kar S, Wang C, Cai W, Dharmarajan AM, Sethi G and Kumar AP: Targeting the PI3K/Akt signaling pathway in gastric carcinoma: A reality for personalized medicine? World J Gastroenterol. 21:12261–12273. 2015. View Article : Google Scholar : PubMed/NCBI

19 

Okugawa Y, Toiyama Y, Hur K, Toden S, Saigusa S, Tanaka K, Inoue Y, Mohri Y, Kusunoki M, Boland CR and Goel A: Metastasis-associated long non-coding RNA drives gastric cancer development and promotes peritoneal metastasis. Carcinogenesis. 35:2731–2739. 2014. View Article : Google Scholar : PubMed/NCBI

20 

Harapan H, Fitra F, Ichsan I, Mulyadi M, Miotto P, Hasan NA, Calado M and Cirillo DM: The roles of microRNAs on tuberculosis infection: Meaning or myth? Tuberculosis (Edinb). 93:596–605. 2013. View Article : Google Scholar : PubMed/NCBI

21 

Wu W, Takanashi M, Borjigin N, Ohno SI, Fujita K, Hoshino S, Osaka Y, Tsuchida A and Kuroda M: MicroRNA-18a modulates STAT3 activity through negative regulation of PIAS3 during gastric adenocarcinogenesis. Br J Cancer. 108:653–661. 2013. View Article : Google Scholar : PubMed/NCBI

22 

Zhu P, Zhang J, Zhu J, Shi J, Zhu Q and Gao Y: miR-429 induces gastric carcinoma cell apoptosis through Bcl-2. Cell Physiol Biochem. 37:1572–1580. 2015. View Article : Google Scholar : PubMed/NCBI

23 

Zhou C, Shen L, Mao L, Wang B, Li Y and Yu H: miR-92a is upregulated in cervical cancer and promotes cell proliferation and invasion by targeting FBXW7. Biochem Biophys Res Commun. 458:63–69. 2015. View Article : Google Scholar : PubMed/NCBI

24 

Ke TW, Wei PL, Yeh KT, Chen WT and Cheng YW: miR-92a promotes cell metastasis of colorectal cancer through PTEN-mediated PI3K/AKT pathway. Ann Surg Oncol. 22:2649–2655. 2015. View Article : Google Scholar : PubMed/NCBI

25 

Zhang G, Zhou H, Xiao H, Liu Z, Tian H and Zhou T: MicroRNA-92a functions as an oncogene in colorectal cancer by targeting PTEN. Dig Dis Sci. 59:98–107. 2014. View Article : Google Scholar : PubMed/NCBI

26 

Chen ZL, Zhao XH, Wang JW, Li BZ, Wang Z, Sun J, Tan FW, Ding DP, Xu XH, Zhou F, et al: MicroRNA-92a promotes lymph node metastasis of human esophageal squamous cell carcinoma via E-cadherin. J Biol Chem. 286:10725–10734. 2011. View Article : Google Scholar : PubMed/NCBI

27 

Xu X, Zhu S, Tao Z and Ye S: High circulating miR-18a, miR-20a, and miR-92a expression correlates with poor prognosis in patients with non-small cell lung cancer. Cancer Med. 7:21–31. 2018. View Article : Google Scholar : PubMed/NCBI

28 

Ranade AR, Cherba D, Sridhar S, Richardson P, Webb C, Paripati A, Bowles B and Weiss GJ: MicroRNA 92a-2*: A biomarker predictive for chemoresistance and prognostic for survival in patients with small cell lung cancer. J Thorac Oncol. 5:1273–1278. 2010. View Article : Google Scholar : PubMed/NCBI

29 

Ludwig S, Klitzsch A and Baniahmad A: The ING tumor suppressors in cellular senescence and chromatin. Cell Biosci. 1:252011. View Article : Google Scholar : PubMed/NCBI

30 

Unoki M, Kumamoto K, Robles AI, Shen JC, Zheng ZM and Harris CC: A novel ING2 isoform, ING2b, synergizes with ING2a to prevent cell cycle arrest and apoptosis. FEBS Lett. 582:3868–3874. 2008. View Article : Google Scholar : PubMed/NCBI

31 

Wang Y, Wang J and Li G: Leucine zipper-like domain is required for tumor suppressor ING2-mediated nucleotide excision repair and apoptosis. FEBS Lett. 580:3787–3793. 2006. View Article : Google Scholar : PubMed/NCBI

32 

Pedeux R, Sengupta S, Shen JC, Demidov ON, Saito S, Onogi H, Kumamoto K, Wincovitch S, Garfield SH, McMenamin M, et al: ING2 regulates the onset of replicative senescence by induction of p300-dependent p53 acetylation. Mol Cell Biol. 25:6639–6648. 2005. View Article : Google Scholar : PubMed/NCBI

33 

Shi X, Hong T, Walter KL, Ewalt M, Michishita E, Hung T, Carney D, Peña P, Lan F, Kaadige MR, et al: ING2 PHD domain links histone H3 lysine 4 methylation to active gene repression. Nature. 442:96–99. 2006. View Article : Google Scholar : PubMed/NCBI

34 

Bua DJ, Martin GM, Binda O and Gozani O: Nuclear phosphatidylinositol-5-phosphate regulates ING2 stability at discrete chromatin targets in response to DNA damage. Sci Rep. 3:21372013. View Article : Google Scholar : PubMed/NCBI

35 

Han XR, Bai XZ, Sun Y and Yang Y: Nuclear ING2 expression is reduced in osteosarcoma. Oncol Rep. 32:1967–1972. 2014. View Article : Google Scholar : PubMed/NCBI

36 

Ythier D, Larrieu D, Binet R, Binda O, Brambilla C, Gazzeri S and Pedeux R: Sumoylation of ING2 regulates the transcription mediated by Sin3A. Oncogene. 29:5946–5956. 2010. View Article : Google Scholar : PubMed/NCBI

37 

Sarker KP, Kataoka H, Chan A, Netherton SJ, Pot I, Huynh MA, Feng X, Bonni A, Riabowol K and Bonni S: ING2 as a novel mediator of transforming growth factor-beta-dependent responses in epithelial cells. J Biol Chem. 283:13269–13279. 2008. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

July 2019
Volume 42 Issue 1

Print ISSN: 1021-335X
Online ISSN:1791-2431

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Tao, X., Zhang, X., Sun, S., & Wu, D. (2019). miR‑92a contributes to cell proliferation, apoptosis and doxorubicin chemosensitivity in gastric carcinoma cells. Oncology Reports, 42, 313-320. https://doi.org/10.3892/or.2019.7168
MLA
Tao, X., Zhang, X., Sun, S., Wu, D."miR‑92a contributes to cell proliferation, apoptosis and doxorubicin chemosensitivity in gastric carcinoma cells". Oncology Reports 42.1 (2019): 313-320.
Chicago
Tao, X., Zhang, X., Sun, S., Wu, D."miR‑92a contributes to cell proliferation, apoptosis and doxorubicin chemosensitivity in gastric carcinoma cells". Oncology Reports 42, no. 1 (2019): 313-320. https://doi.org/10.3892/or.2019.7168