Open Access

Differential gene methylation patterns in cancerous and non‑cancerous cells

  • Authors:
    • Katarzyna Kamińska
    • Aneta Białkowska
    • Janusz Kowalewski
    • Sui Huang
    • Marzena A. Lewandowska
  • View Affiliations

  • Published online on: May 15, 2019     https://doi.org/10.3892/or.2019.7159
  • Pages: 43-54
  • Copyright: © Kamińska et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Large‑scale projects, such as The Cancer Genome Atlas (TCGA), Human Epigenome Project (HEP) and Human Epigenome Atlas (HEA), provide an insight into DNA methylation and histone modification markers. Changes in the epigenome significantly contribute to the initiation and progression of cancer. The goal of the present study was to characterize the prostate cancer malignant transformation model using the CpG island methylation pattern. The Human Prostate Cancer EpiTect Methyl II Signature PCR Array was used to evaluate the methylation status of 22 genes in prostate cancer cell lines: PC3, PC3M, PC3MPro4 and PC3MLN4, each representing different metastatic potential in vivo. Subsequently, it was ascertained whether DNA methylation plays a role in the expression of these genes in prostate cancer cells. Hypermethylation of APC, DKK3, GPX3, GSTP1, MGMT, PTGS2, RASSF1, TIMP2 and TNFRSF10D resulted in downregulation of their expression in prostate cancer cell lines as compared to WT fibroblasts. Mining of the TCGA data deposited in the MetHC database found increases in the methylation status of these 9 genes in prostate cancer patients, further supporting the role of methylation in altering the expression of these genes in prostate cancer. Future studies are warranted to investigate the role of these proteins in prostate cancer development.

References

1 

The Cancer Genome Atlas-National Cancer Institute. simplehttps://cancergenome.nih.gov/2018 10 222011

2 

Baylin SB and Herman JG: DNA hypermethylation in tumorigenesis: Epigenetics joins genetics. Trends Genet. 16:168–174. 2000. View Article : Google Scholar : PubMed/NCBI

3 

Yang M and Park JY: DNA methylation in promoter region as biomarkers in prostate cancer. Methods Mol Biol. 863:67–109. 2012. View Article : Google Scholar : PubMed/NCBI

4 

Golub TR, Slonim DK, Tamayo P, Huard C, Gaasenbeek M, Mesirov JP, Coller H, Loh ML, Downing JR, Caligiuri MA, et al: Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring. Science. 286:531–537. 1999. View Article : Google Scholar : PubMed/NCBI

5 

van't Veer LJ, Dai H, van de Vijver MJ, He YD, Hart AA, Mao M, Peterse HL, van der Kooy K, Marton MJ, Witteveen AT, et al: Gene expression profiling predicts clinical outcome of breast cancer. Nature. 415:530–536. 2002. View Article : Google Scholar : PubMed/NCBI

6 

Salazar R, Roepman P, Capella G, Moreno V, Simon I, Dreezen C, Lopez-Doriga A, Santos C, Marijnen C, Westerga J, et al: Gene expression signature to improve prognosis prediction of stage II and III colorectal cancer. J Clin Oncol. 29:17–24. 2011. View Article : Google Scholar : PubMed/NCBI

7 

Guo L, Ma Y, Ward R, Castranova V, Shi X and Qian Y: Constructing molecular classifiers for the accurate prognosis of lung adenocarcinoma. Clin Cancer Res. 12:3344–3354. 2006. View Article : Google Scholar : PubMed/NCBI

8 

Toyota M, Ahuja N, Ohe-Toyota M, Herman JG, Baylin SB and Issa JP: CpG island methylator phenotype in colorectal cancer. Proc Natl Acad Sci USA. 96:8681–8686. 1999. View Article : Google Scholar : PubMed/NCBI

9 

Shi H, Chen J, Li Y, Li G, Zhong R, Du D, Meng R, Kong W and Lu M: Identification of a six microRNA signature as a novel potential prognostic biomarker in patients with head and neck squamous cell carcinoma. Oncotarget. 7:21579–21590. 2016.PubMed/NCBI

10 

Voronkov A and Krauss S: Wnt/beta-catenin signaling and small molecule inhibitors. Curr Pharm Des. 19:634–664. 2013. View Article : Google Scholar : PubMed/NCBI

11 

Liu P, Rudick M and Anderson RG: Multiple functions of caveolin-1. J Biol Chem. 277:41295–41298. 2002. View Article : Google Scholar : PubMed/NCBI

12 

Rayess H, Wang MB and Srivatsan ES: Cellular senescence and tumor suppressor gene p16. Int J Cancer. 130:1715–1725. 2012. View Article : Google Scholar : PubMed/NCBI

13 

Angst BD, Marcozzi C and Magee AI: The cadherin superfamily: Diversity in form and function. J Cell Sci. 114:629–641. 2001.PubMed/NCBI

14 

Kim TY, Vigil D, Der CJ and Juliano RL: Role of DLC-1, a tumor suppressor protein with RhoGAP activity, in regulation of the cytoskeleton and cell motility. Cancer Metastasis Rev. 28:77–83. 2009. View Article : Google Scholar : PubMed/NCBI

15 

Niehrs C: Function and biological roles of the Dickkopf family of Wnt modulators. Oncogene. 25:7469–7481. 2006. View Article : Google Scholar : PubMed/NCBI

16 

Arai H, Nakao K, Takaya K, Hosoda K, Ogawa Y, Nakanishi S and Imura H: The human endothelin-B receptor gene. Structural organization and chromosomal assignment. J Biol Chem. 268:3463–3470. 1993.PubMed/NCBI

17 

Chen B, Rao X, House MG, Nephew KP, Cullen KJ and Guo Z: GPx3 promoter hypermethylation is a frequent event in human cancer and is associated with tumorigenesis and chemotherapy response. Cancer Lett. 309:37–45. 2011. View Article : Google Scholar : PubMed/NCBI

18 

Hayes JD and Pulford DJ: The glutathione S-transferase supergene family: Regulation of GST and the contribution of the isoenzymes to cancer chemoprotection and drug resistance. Crit Rev Biochem Mol Biol. 30:445–600. 1995. View Article : Google Scholar : PubMed/NCBI

19 

Kaina B, Christmann M, Naumann S and Roos WP: MGMT: Key node in the battle against genotoxicity, carcinogenicity and apoptosis induced by alkylating agents. DNA Repair. 6:1079–1099. 2007. View Article : Google Scholar : PubMed/NCBI

20 

Bonito NA, Borley J, Wilhelm-Benartzi CS, Ghaem-Maghami S and Brown R: Epigenetic regulation of the homeobox gene MSX1 associates with platinum-resistant disease in high-grade serous epithelial ovarian cancer. Clin Cancer Res. 22:3097–3104. 2016. View Article : Google Scholar : PubMed/NCBI

21 

Vanaja DK, Grossmann ME, Cheville JC, Gazi MH, Gong A, Zhang JS, Ajtai K, Burghardt TP and Young CY: PDLIM4, an actin binding protein, suppresses prostate cancer cell growth. Cancer Invest. 27:264–272. 2009. View Article : Google Scholar : PubMed/NCBI

22 

Chandrasekharan NV and Simmons DL: The cyclooxygenases. Genome Biol. 5:2412004. View Article : Google Scholar : PubMed/NCBI

23 

Tang D, Kryvenko ON, Mitrache N, Do KC, Jankowski M, Chitale DA, Trudeau S, Rundle A, Belinsky SA and Rybicki BA: Methylation of the RARB gene increases prostate cancer risk in black Americans. J Urol. 190:317–324. 2013. View Article : Google Scholar : PubMed/NCBI

24 

Volodko N, Gordon M, Salla M, Ghazaleh HA and Baksh S: RASSF tumor suppressor gene family: Biological functions and regulation. FEBS Lett. 588:2671–2684. 2014. View Article : Google Scholar : PubMed/NCBI

25 

Mo S, Su Z, Heng B, Chen W, Shi L, Du X and Lai C: SFRP1 promoter methylation and renal carcinoma risk: A systematic review and meta-analysis. J Nippon Med Sch. 85:78–86. 2018. View Article : Google Scholar : PubMed/NCBI

26 

Ganapathy V, Thangaraju M, Gopal E, Martin PM, Itagaki S, Miyauchi S and Prasad PD: Sodium-coupled monocarboxylate transporters in normal tissues and in cancer. AAPS J. 10:193–199. 2008. View Article : Google Scholar : PubMed/NCBI

27 

Brew K and Nagase H: The tissue inhibitors of metalloproteinases (TIMPs): An ancient family with structural and functional diversity. Biochim Biophys Acta. 1803:55–71. 2010. View Article : Google Scholar : PubMed/NCBI

28 

Pan G, Ni J, Wei YF, Yu G, Gentz R and Dixit VM: An antagonist decoy receptor and a death domain-containing receptor for TRAIL. Science. 277:815–818. 1997. View Article : Google Scholar : PubMed/NCBI

29 

Zhang JS, Gong A and Young CY: ZNF185, an actin-cytoskeleton-associated growth inhibitory LIM protein in prostate cancer. Oncogene. 26:111–122. 2007. View Article : Google Scholar : PubMed/NCBI

30 

Pettaway CA, Pathak S, Greene G, Ramirez E, Wilson MR, Killion JJ and Fidler IJ: Selection of highly metastatic variants of different human prostatic carcinomas using orthotopic implantation in nude mice. Clin Cancer Res. 2:1627–1636. 1996.PubMed/NCBI

31 

Wang C, Norton JT, Ghosh S, Kim J, Fushimi K, Wu JY, Stack MS and Huang S: Polypyrimidine tract-binding protein (PTB) differentially affects malignancy in a cell line-dependent manner. J Biol Chem. 283:20277–20287. 2008. View Article : Google Scholar : PubMed/NCBI

32 

Godthelp BC, van Buul PP, Jaspers NG, Elghalbzouri-Maghrani E, van Duijn-Goedhart A, Arwert F, Joenje H and Zdzienicka MZ: Cellular characterization of cells from the Fanconi anemia complementation group, FA-D1/BRCA2. Mutat Res. 601:191–201. 2006. View Article : Google Scholar : PubMed/NCBI

33 

Wiegant WW, Meyers M, Verkaik NS, van der Burg M, Darroudi F, Romeijn R, Bernatowska E, Wolska-Kusnierz B, Mikoluc B, Jaspers NG, et al: A novel radiosensitive SCID patient with a pronounced G2/M sensitivity. DNA Repair. 9:365–373. 2010. View Article : Google Scholar : PubMed/NCBI

34 

Bastian PJ, Ellinger J, Wellmann A, Wernert N, Heukamp LC, Müller SC and von Ruecker A: Diagnostic and prognostic information in prostate cancer with the help of a small set of hypermethylated gene loci. Clin Cancer Res. 11:4097–4106. 2005. View Article : Google Scholar : PubMed/NCBI

35 

Yu YP, Yu G, Tseng G, Cieply K, Nelson J, Defrances M, Zarnegar R, Michalopoulos G and Luo JH: Glutathione peroxidase 3, deleted or methylated in prostate cancer, suppresses prostate cancer growth and metastasis. Cancer Res. 67:8043–8050. 2007. View Article : Google Scholar : PubMed/NCBI

36 

Norton JT, Pollock CB, Wang C, Schink JC, Kim JJ and Huang S: Perinucleolar Compartment prevalence is a phenotypic pancancer marker of malignancy. Cancer. 113:861–869. 2008. View Article : Google Scholar : PubMed/NCBI

37 

Frycz B, Pinczewska A and Jagodziński PP: Maślan sodu obniża ekspresję dehydrogenazy 17β-hydroksysteroidowej typu 1-szego W linii komórkowej raka gruczołu krokowego LNCaP. Nowiny Lekarskie. 80:283–287. 2011.

38 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods. 25:402–408. 2001. View Article : Google Scholar : PubMed/NCBI

39 

Huang WY, Hsu SD, Huang HY, Sun YM, Chou CH, Weng SL and Huang HD: MethHC: A database of DNA methylation and gene expression in human cancer. Nucleic Acids Res. 43:D856–D861. 2015. View Article : Google Scholar : PubMed/NCBI

40 

MethHC, . A database of DNA methylation and gene expression in human cancers. simplehttp://methhc.mbc.nctu.edu.tw/php/index.phpOctober 23–2018

41 

van de Vijver MJ, He YD, van't Veer LJ, Dai H, Hart AA, Voskuil DW, Schreiber GJ, Peterse JL, Roberts C, Marton MJ, et al: A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med. 347:1999–2009. 2002. View Article : Google Scholar : PubMed/NCBI

42 

O'Connell MJ, Lavery I, Yothers G, Paik S, Clark-Langone KM, Lopatin M, Watson D, Baehner FL, Shak S, Baker J, et al: Relationship between tumor gene expression and recurrence in four independent studies of patients with stage II/III colon cancer treated with surgery alone or surgery plus adjuvant fluorouracil plus leucovorin. J Clin Oncol. 28:3937–3944. 2010. View Article : Google Scholar : PubMed/NCBI

43 

Roszkowski K, Furtak J, Zurawski B, Szylberg T and Lewandowska MA: Potential role of methylation marker in glioma supporting clinical decisions. Int J Mol Sci. 17(pii): E18762016. View Article : Google Scholar : PubMed/NCBI

44 

Song L, Peng X, Li Y, Xiao W, Jia J, Dong C, Gong Y, Zhou G and Han X: The SEPT9 gene methylation assay is capable of detecting colorectal adenoma in opportunistic screening. Epigenomics. 9:599–610. 2017. View Article : Google Scholar : PubMed/NCBI

45 

Jiang Q, Liu CX, Gu X, Wilt G, Shaffer J, Zhang Y and Devgan V: EpiTect Methyl II PCR Array System: A simple tool for screening regional DNA methylation of a large number of genes or samples without bisulfite conversion. Qiagen. simplehttps://www.qiagen.com/ch/resources/resourcedetail?id=39ec06aa-ec53-4acd-aa15-67b5882efbb6&lang=en(cited 2018-11-09).

46 

Kang GH, Lee S, Lee HJ and Hwang KS: Aberrant CpG island hypermethylation of multiple genes in prostate cancer and prostatic intraepithelial neoplasia. J Pathol. 202:233–240. 2004. View Article : Google Scholar : PubMed/NCBI

47 

Richiardi L, Fiano V, Vizzini L, De Marco L, Delsedime L, Akre O, Tos AG and Merletti F: Promoter methylation in APC, RUNX3, and GSTP1 and mortality in prostate cancer patients. J Clin Oncol. 27:3161–3168. 2009. View Article : Google Scholar : PubMed/NCBI

48 

Llorca-Cardeñosa MJ, Fleitas T, Ibarrola-Villava M, Peña-Chilet M, Mongort C, Martinez-Ciarpaglini C, Navarro L, Gambardella V, Castillo J, Roselló S, et al: Epigenetic changes in localized gastric cancer: The role of RUNX3 in tumor progression and the immune microenvironment. Oncotarget. 7:63424–63436. 2016. View Article : Google Scholar : PubMed/NCBI

49 

Gu YM, Ma YH, Zhao WG and Chen J: Dickkopf3 overexpression inhibits pancreatic cancer cell growth in vitro. World J Gastroenterol. 17:3810–3817. 2011. View Article : Google Scholar : PubMed/NCBI

50 

Veeck J, Wild PJ, Fuchs T, Schüffler PJ, Hartmann A, Knüchel R and Dahl E: Prognostic relevance of Wnt-inhibitory factor-1 (WIF1) and Dickkopf-3 (DKK3) promoter methylation in human breast cancer. BMC Cancer. 9:2172009. View Article : Google Scholar : PubMed/NCBI

51 

Romero D and Kypta R: Dickkopf-3 function in the prostate: Implications for epithelial homeostasis and tumor progression. Bioarchitecture. 3:42–44. 2013. View Article : Google Scholar : PubMed/NCBI

52 

Romero D, Kawano Y, Bengoa N, Walker MM, Maltry N, Niehrs C, Waxman J and Kypta R: Downregulation of Dickkopf-3 disrupts prostate acinar morphogenesis through TGF-β/Smad signalling. J Cell Sci. 126:1858–1867. 2013. View Article : Google Scholar : PubMed/NCBI

53 

Lodygin D, Epanchintsev A, Menssen A, Diebold J and Hermeking H: Functional epigenomics identifies genes frequently silenced in prostate cancer. Cancer Res. 65:4218–4227. 2005. View Article : Google Scholar : PubMed/NCBI

54 

Yu YP, Paranjpe S, Nelson J, Finkelstein S, Ren B, Kokkinakis D, Michalopoulos G and Luo JH: High throughput screening of methylation status of genes in prostate cancer using an oligonucleotide methylation array. Carcinogenesis. 26:471–479. 2005. View Article : Google Scholar : PubMed/NCBI

55 

Falck E, Karlsson S, Carlsson J, Helenius G, Karlsson M and Klinga-Levan K: Loss of glutathione peroxidase 3 expression is correlated with epigenetic mechanisms in endometrial adenocarcinoma. Cancer Cell Int. 10:462010. View Article : Google Scholar : PubMed/NCBI

56 

Yegnasubramanian S, Kowalski J, Gonzalgo ML, Zahurak M, Piantadosi S, Walsh PC, Bova GS, De Marzo AM, Isaacs WB and Nelson WG: Hypermethylation of CpG islands in primary and metastatic human prostate cancer. Cancer Res. 64:1975–1986. 2004. View Article : Google Scholar : PubMed/NCBI

57 

Strand SH, Orntoft TF and Sorensen KD: Prognostic DNA methylation markers for prostate cancer. Int J Mol Sci. 15:16544–16576. 2014. View Article : Google Scholar : PubMed/NCBI

58 

Rosenbaum E, Hoque MO, Cohen Y, Zahurak M, Eisenberger MA, Epstein JI, Partin AW and Sidransky D: Promoter hypermethylation as an independent prognostic factor for relapse in patients with prostate cancer following radical prostatectomy. Clin Cancer Res. 11:8321–8325. 2005. View Article : Google Scholar : PubMed/NCBI

59 

Richiardi L, Fiano V, Grasso C, Zugna D, Delsedime L, Gillio-Tos A and Merletti F: Methylation of APC and GSTP1 in non-neoplastic tissue adjacent to prostate tumour and mortality from prostate cancer. PLoS One. 8:e681622013. View Article : Google Scholar : PubMed/NCBI

60 

Bastian PJ, Palapattu GS, Lin X, Yegnasubramanian S, Mangold LA, Trock B, Eisenberger MA, Partin AW and Nelson WG: Preoperative serum DNA GSTP1 CpG island hypermethylation and the risk of early prostate-specific antigen recurrence following radical prostatectomy. Clin Cancer Res. 11:4037–4043. 2005. View Article : Google Scholar : PubMed/NCBI

61 

Konishi N, Nakamura M, Kishi M, Nishimine M, Ishida E and Shimada K: DNA hypermethylation status of multiple genes in prostate adenocarcinomas. Jpn J Cancer Res. 93:767–773. 2002. View Article : Google Scholar : PubMed/NCBI

62 

Ellinger J, Bastian PJ, Haan KI, Heukamp LC, Buettner R, Fimmers R, Mueller SC and von Ruecker A: Noncancerous PTGS2 DNA fragments of apoptotic origin in sera of prostate cancer patients qualify as diagnostic and prognostic indicators. Int J Cancer. 122:138–143. 2008. View Article : Google Scholar : PubMed/NCBI

63 

Vasiljević N, Wu K, Brentnall AR, Kim DC, Thorat MA, Kudahetti SC, Mao X, Xue L, Yu Y, Shaw GL, et al: Absolute quantitation of DNA methylation of 28 candidate genes in prostate cancer using pyrosequencing. Dis Markers. 30:151–161. 2011. View Article : Google Scholar : PubMed/NCBI

64 

Morris MR, Ricketts C, Gentle D, Abdulrahman M, Clarke N, Brown M, Kishida T, Yao M, Latif F and Maher ER: Identification of candidate tumour suppressor genes frequently methylated in renal cell carcinoma. Oncogene. 29:2104–2117. 2010. View Article : Google Scholar : PubMed/NCBI

65 

Boumber YA, Kondo Y, Chen X, Shen L, Gharibyan V, Konishi K, Estey E, Kantarjian H, Garcia-Manero G and Issa JP: RIL, a LIM gene on 5q31, is silenced by methylation in cancer and sensitizes cancer cells to apoptosis. Cancer Res. 67:1997–2005. 2007. View Article : Google Scholar : PubMed/NCBI

66 

Liu L, Yoon JH, Dammann R and Pfeifer GP: Frequent hypermethylation of the RASSF1A gene in prostate cancer. Oncogene. 21:6835–6840. 2002. View Article : Google Scholar : PubMed/NCBI

67 

Maruyama R, Toyooka S, Toyooka KO, Virmani AK, Zöchbauer- Müller S, Farinas AJ, Minna JD, McConnell J, Frenkel EP and Gazdar AF: Aberrant promoter methylation profile of prostate cancers and its relationship to clinicopathological features. Clin Cancer Res. 8:514–519. 2002.PubMed/NCBI

68 

Imren S, Kohn DB, Shimada H, Blavier L and DeClerck YA: Overexpression of tissue inhibitor of metalloproteinases-2 retroviral-mediated gene transfer in vivo inhibits tumor growth and invasion. Cancer Res. 56:2891–2895. 1996.PubMed/NCBI

69 

Pulukuri SM, Patibandla S, Patel J, Estes N and Rao JS: Epigenetic inactivation of the tissue inhibitor of metalloproteinase-2 (TIMP-2) gene in human prostate tumors. Oncogene. 26:5229–5237. 2007. View Article : Google Scholar : PubMed/NCBI

70 

Ross JS, Kaur P, Sheehan CE, Fisher HA, Kaufman RA Jr and Kallakury BV: Prognostic significance of matrix metalloproteinase 2 and tissue inhibitor of metalloproteinase 2 expression in prostate cancer. Mod Pathol. 16:198–205. 2003. View Article : Google Scholar : PubMed/NCBI

71 

Ratzinger G, Mitteregger S, Wolf B, Berger R, Zelger B, Weinlich G, Fritsch P, Goebel G and Fiegl H: Association of TNFRSF10D DNA-methylation with the survival of melanoma patients. Int J Mol Sci. 15:11984–11995. 2014. View Article : Google Scholar : PubMed/NCBI

72 

Hornstein M, Hoffmann MJ, Alexa A, Yamanaka M, Müller M, Jung V, Rahnenführer J and Schulz WA: Protein phosphatase and TRAIL receptor genes as new candidate tumor genes on chromosome 8p in prostate cancer. Cancer Genomics Proteomics. 5:123–136. 2008.PubMed/NCBI

73 

Catalanotto C, Cogoni C and Zardo G: MicroRNA in control of gene expression: An overview of nuclear functions. Int J Mol Sci. 17(pii): E17122016. View Article : Google Scholar : PubMed/NCBI

74 

Kubiak M and Lewandowska MA: Can chromatin conformation technologies bring light into human molecular pathology? Acta Biochim Pol. 62:483–489. 2015. View Article : Google Scholar : PubMed/NCBI

75 

Audia JE and Campbell RM: Histone modifications and cancer. Cold Spring Harb Perspect Biol. 8:a0195212016. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

July 2019
Volume 42 Issue 1

Print ISSN: 1021-335X
Online ISSN:1791-2431

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Kamińska, K., Białkowska, A., Kowalewski, J., Huang, S., & Lewandowska, M.A. (2019). Differential gene methylation patterns in cancerous and non‑cancerous cells. Oncology Reports, 42, 43-54. https://doi.org/10.3892/or.2019.7159
MLA
Kamińska, K., Białkowska, A., Kowalewski, J., Huang, S., Lewandowska, M. A."Differential gene methylation patterns in cancerous and non‑cancerous cells". Oncology Reports 42.1 (2019): 43-54.
Chicago
Kamińska, K., Białkowska, A., Kowalewski, J., Huang, S., Lewandowska, M. A."Differential gene methylation patterns in cancerous and non‑cancerous cells". Oncology Reports 42, no. 1 (2019): 43-54. https://doi.org/10.3892/or.2019.7159