Androgen receptor and soy isoflavones in prostate cancer (Review)

  • Authors:
    • Monika Kmetová Sivoňová
    • Peter Kaplán
    • Zuzana Tatarková
    • Lucia Lichardusová
    • Róbert Dušenka
    • Jana Jurečeková
  • View Affiliations

  • Published online on: December 11, 2018     https://doi.org/10.3892/mco.2018.1792
  • Pages: 191-204
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Androgens and androgen receptor (AR) play a critical role not only in normal prostate development, but also in prostate cancer. For that reason, androgen deprivation therapy (ADT) is the primary treatment for prostate cancer. However, the majority of patients develop castration‑resistant prostate cancer, which eventually leads to mortality. Novel therapeutic approaches, including dietary changes, have been explored. Soy isoflavones have become a focus of interest because of their positive health benefits on numerous diseases, particularly hormone‑related cancers, including prostate and breast cancers. An important strategy for the prevention and/or treatment of prostate cancer might thus be the action of soy isoflavones on the AR signaling pathway. The current review article provides a detailed overview of the anticancer potential of soy isoflavones (genistein, daidzein and glycitein), as mediated by their effect on AR.

References

1 

Pernar CH, Ebot EM, Wilson KM and Mucci LA: The epidemiology of prostate cancer. Cold Spring Harb Perspect Med. 8(pii): a0303612018. View Article : Google Scholar : PubMed/NCBI

2 

Mitsuzuka K and Arai Y: Metabolic changes in patients with prostate cancer during androgen deprivation therapy. Int J Urol. 25:45–53. 2018. View Article : Google Scholar : PubMed/NCBI

3 

Grasso CS, Wu YM, Robinson DR, Cao X, Dhanasekaran SM, Khan AP, Quist MJ, Jing X, Lonigro RJ, Brenner JC, et al: The mutational landscape of lethal castration-resistant prostate cancer. Nature. 487:239–243. 2012. View Article : Google Scholar : PubMed/NCBI

4 

Sung B, Prasad S, Yadav VR, Lavasanifar A and Aggarwal BB: Cancer and diet: How are they related? Free Radic Res. 45:864–879. 2011. View Article : Google Scholar : PubMed/NCBI

5 

Zhang HY, Cui J, Zhang Y, Wang ZL, Chong T and Wang ZM: Isoflavones and prostate cancer: A review of some critical issues. Chin Med J (Engl). 129:341–347. 2016. View Article : Google Scholar : PubMed/NCBI

6 

Patel RP, Boersma BJ, Crawford JH, Hogg N, Kirk M, Kalyanaraman B, Parks DA, Barnes S and Darley-Usmar V: Antioxidant mechanisms of isoflavones in lipid systems: Paradoxical effects of peroxyl radical scavenging. Free Radic Biol Med. 31:1570–1581. 2001. View Article : Google Scholar : PubMed/NCBI

7 

Yen GC and Lai HH: Inhibition of reactive nitrogen species effects in vitro and in vivo by isoflavones and soy-based food extracts. J Agric Food Chem. 51:7892–7900. 2003. View Article : Google Scholar : PubMed/NCBI

8 

Braakhuis AJ, Campion P and Bishop KS: Reducing breast cancer recurrence: The role of dietary polyphenolics. Nutrients. 8(pii): E5472016. View Article : Google Scholar : PubMed/NCBI

9 

Kuiper GG, Carlsson B, Grandien K, Enmark E, Häggblad J, Nilsson S and Gustafsson JA: Comparison of the ligand binding specificity and transcript tissue distribution of estrogen receptors alpha and beta. Endocrinology. 138:863–870. 1997. View Article : Google Scholar : PubMed/NCBI

10 

Akiyama T, Ishida J, Nakagawa S, Ogawara H, Watanabe S, Itoh N, Shibuya M and Fukami Y: Genistein, a specific inhibitor of tyrosine-specific protein kinases. J Biol Chem. 262:5592–5595. 1987.PubMed/NCBI

11 

Rabiau N, Kossaï M, Braud M, Chalabi N, Satih S, Bignon YJ and Bernard-Gallon DJ: Genistein and daidzein act on a panel of genes implicated in cell cycle and angiogenesis by polymerase chain reaction arrays in human prostate cancer cell lines. Cancer Epidemiol. 34:200–206. 2010. View Article : Google Scholar : PubMed/NCBI

12 

Bektic J, Berger AP, Pfeil K, Dobler G, Bartsch G and Klocker H: Androgen receptor regulation by physiological concentrations of the isoflavonoid genistein in androgen-dependent LNCaP cells is mediated by estrogen receptor beta. Eur Urol. 45:245–251. 2004. View Article : Google Scholar : PubMed/NCBI

13 

Fritz WA, Wang J, Eltoum IE and Lamartiniere CA: Dietary genistein down-regulates androgen and estrogen receptor expression in the rat prostate. Mol Cell Endocrinol. 186:89–99. 2002. View Article : Google Scholar : PubMed/NCBI

14 

Mahmoud AM, Yang W and Bosland MC: Soy isoflavones and prostate cancer: A review of molecular mechanisms. J Steroid Biochem Mol Biol. 140:161–132. 2014. View Article : Google Scholar

15 

Applegate CC, Rowles JL, Ranard KM, Jeon S and Erdman JW: Soy consumption and the risk of prostate cancer: An updated systematic review and meta-analysis. Nutrients. 10(pii): E402018. View Article : Google Scholar : PubMed/NCBI

16 

Kumar R: Steroid hormone receptors and prostate cancer: Role of structural dynamics in therapeutic targeting. Asian J Androl. 18:682–686. 2016. View Article : Google Scholar : PubMed/NCBI

17 

Jenster G, van der Korput HA, Trapman J and Brinkmann AO: Identification of two transcription activation units in the N-terminal domain of the human androgen receptor. J Biol Chem. 270:7341–7346. 1995. View Article : Google Scholar : PubMed/NCBI

18 

Kumar R and McEwan IJ: Allosteric modulators of steroid hormone receptors: Structural dynamics and gene regulation. Endocr Rev. 33:271–299. 2012. View Article : Google Scholar : PubMed/NCBI

19 

Monaghan AE and McEwan IJ: A sting in the tail: The N-terminal domain of the androgen receptor as a drug target. Asian J Androl. 18:687–694. 2016. View Article : Google Scholar : PubMed/NCBI

20 

Lavery DN and McEwan IJ: Functional characterization of the native NH2-terminal transactivation domain of the human androgen receptor: Binding kinetics for interactions with TFIIF and SRC-1a. Biochemistry. 47:3352–3359. 2008. View Article : Google Scholar : PubMed/NCBI

21 

Verrijdt G, Tanner T, Moehren U, Callewaert L, Haelens A and Claessens F: The androgen receptor DNA-binding domain determines androgen selectivity of transcriptional response. Biochem Soc Trans. 34:1089–1094. 2006. View Article : Google Scholar : PubMed/NCBI

22 

Zhou ZX, Wong CI, Sar M and Wilson EM: The androgen receptor: An overview. Recent Prog Horm Res. 49:249–274. 1994.PubMed/NCBI

23 

Matias PM, Donner P, Coelho R, Thomaz M, Peixoto C, Macedo S, Otto N, Joschko S, Scholz P, Wegg A, et al: Structural evidence for ligand specificity in the binding domain of the human androgen receptor. Implications for pathogenic gene mutations. J Biol Chem. 275:26164–26171. 2000. View Article : Google Scholar : PubMed/NCBI

24 

Davey RA and Grossmann M: Androgen receptor structure, function and biology: From bench to bedside. Clin Biochem Rev. 37:3–15. 2016.PubMed/NCBI

25 

Veldscholte J, Berrevoets CA, Zegers ND, van der Kwast TH, Grootegoed JA and Mulder E: Hormone-induced dissociation of the androgen receptor-heat-shock protein complex: Use of a new monoclonal antibody to distinguish transformed from nontransformed receptors. Biochemistry. 31:7422–7430. 1992. View Article : Google Scholar : PubMed/NCBI

26 

van der Steen T, Tindall DJ and Huang H: Posttranslational modification of the androgen receptor in prostate cancer. Int J Mol Sci. 14:14833–14859. 2013. View Article : Google Scholar : PubMed/NCBI

27 

Boam T: Anti-androgenic effects of flavonols in prostate cancer. Ecancermedicalscience. 9:5852015.PubMed/NCBI

28 

D'Archivio M, Filesi C, Di Benedetto R, Gargiulo R, Giovannini C and Masella R: Polyphenols, dietary sources and bioavailability. Ann Ist Super Sanita. 43:348–361. 2007.PubMed/NCBI

29 

Trebatická J and Ďuračková Z: Psychiatric disorders and polyphenols: Can they be helpful in therapy? Oxid Med Cell Longev 2015. 2485292015.

30 

Crozier A, Jaganath IB and Clifford MN: Phenols, polyphenols and tannins: An overview, in plant secondary metabolites: Occurrence, structure and role in the human diet. Crozier A, Clifford MN and Ashihara H: Oxford: Blackwell Publishing Ltd; pp. 1–24. 2006

31 

Cassidy A and Minihane AM: The role of metabolism (and the microbiome) in defining the clinical efficacy of dietary flavonoids. Am J Clin Nutr. 105:10–22. 2017. View Article : Google Scholar : PubMed/NCBI

32 

Adegbola P, Aderibigbe I, Hammed W and Omotayo T: Antioxidant and anti-inflammatory medicinal plants have potential role in the treatment of cardiovascular disease: A review. Am J Cardiovasc Dis. 7:19–32. 2017.PubMed/NCBI

33 

Barbieri R, Coppo E, Marchese A, Daglia M, Sobarzo-Sánchez E, Nabavi SF and Nabavi SM: Phytochemicals for human disease: An update on plant-derived compounds antibacterial activity. Microbiol Res. 196:44–68. 2017. View Article : Google Scholar : PubMed/NCBI

34 

Crozier A, Jaganath IB and Clifford MN: Dietary phenolics: Chemistry, bioavailability and effects on health. Nat Prod Rep. 26:1001–1043. 2009. View Article : Google Scholar : PubMed/NCBI

35 

Costa SL, Silva VD, Dos Santos Souza C, Santos CC, Paris I, Muñoz P and Segura-Aguilar J: Impact of plant-derived flavonoids on neurodegenerative diseases. Neurotox Res. 30:41–52. 2016. View Article : Google Scholar : PubMed/NCBI

36 

Wang J, Tang L and Wang JS: Biomarkers of dietary polyphenols in cancer studies: Current evidence and beyond. Oxid Med Cell Longev. 2015:7323022015. View Article : Google Scholar : PubMed/NCBI

37 

Hilakivi-Clarke L, Andrade JE and Helferich W: Is soy consumption good or bad for the breast? J Nutr. 140:2326S–2334S. 2010. View Article : Google Scholar : PubMed/NCBI

38 

Setchell KD, Brown NM, Desai PB, Zimmer-Nechimias L, Wolfe B, Jakate AS, Creutzinger V and Heubi JE: Bioavailability, disposition, and dose-response effects of soy isoflavones when consumed by healthy women at physiologically typical dietary intakes. J Nutr. 133:1027–1035. 2003. View Article : Google Scholar : PubMed/NCBI

39 

Mondot S and Lepage P: The human gut microbiome and its dysfunctions through the meta-omics prism. Ann N Y Acad Sci. 1372:9–19. 2016. View Article : Google Scholar : PubMed/NCBI

40 

Landete JM, Arqués J, Medina M, Gaya P, de Las Rivas B and Muñoz R: Bioactivation of phytoestrogens: Intestinal bacteria and health. Crit Rev Food Sci Nutr. 56:1826–1843. 2016. View Article : Google Scholar : PubMed/NCBI

41 

Rafii F: The role of colonic bacteria in the metabolism of the natural isoflavone daidzin to equol. Metabolites. 5:56–73. 2015. View Article : Google Scholar : PubMed/NCBI

42 

Heinonen SM, Hoikkala A, Wähälä K and Adlercreutz H: Metabolism of the soy isoflavones daidzein, genistein and glycitein in human subjects. Identification of new metabolites having an intact isoflavonoid skeleton. J Steroid Biochem Mol Biol. 87:285–299. 2003. View Article : Google Scholar : PubMed/NCBI

43 

Pilšáková L, Riečanský I and Jagla F: The physiological actions of isoflavone phytoestrogens. Physiol Res. 59:651–664. 2010.PubMed/NCBI

44 

Manach C, Williamson G, Morand C, Scalbert A and Rémésy C: Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies. Am J Clin Nutr. 81 Suppl 1:230S–242S. 2005. View Article : Google Scholar : PubMed/NCBI

45 

Barnes S: The biochemistry, chemistry and physiology of the isoflavones in soybeans and their food products. Lymphat Res Biol. 8:89–98. 2010. View Article : Google Scholar : PubMed/NCBI

46 

Murphy PA, Barua K and Hauck CC: Solvent extraction selection in the determination of isoflavones in soy foods. J Chromatogr B. 777:129–138. 2002. View Article : Google Scholar

47 

Bai W, Wang C and Ren C: Intakes of total and individual flavonoids by US adults. Int J Food Sci Nutr. 65:9–20. 2014. View Article : Google Scholar : PubMed/NCBI

48 

Van E, rp-Baart MA, Brants HA, Kiely M, Mulligan A, Turrini A, Sermoneta C, Kilkkinen A and Valsta LM: Isoflavone intake in four different European countries: The VENUS approach. Br J Nutr. 89 Suppl 1:S25–S30. 2003.PubMed/NCBI

49 

Sureda A, Sanches Silva A, Sánchez-Machado DI, López-Cervantes J, Daglia M, Nabavi SF and Nabavi SM: Hypotensive effects of genistein: From chemistry to medicine. Chem Biol Interact. 268:37–46. 2017. View Article : Google Scholar : PubMed/NCBI

50 

Rahman Mazumder MA and Hongsprabhas P: Genistein as antioxidant and antibrowning agents in in vivo and in vitro: A review. Biomed Pharmacother. 82:379–392. 2016. View Article : Google Scholar : PubMed/NCBI

51 

Messina MJ, Persky V, Setchell KD and Barnes S: Soy intake and cancer risk: A review of the in vitro and in vivo data. Nutr Cancer. 21:113–131. 1994. View Article : Google Scholar : PubMed/NCBI

52 

Baxa DM, Luo X and Yoshimura FK: Genistein induces apoptosis in T lymphoma cells via mitochondrial damage. Nutr Cancer. 51:93–101. 2005. View Article : Google Scholar : PubMed/NCBI

53 

Baxa DM and Yoshimura FK: Genistein reduces NF-kappa B in T lymphoma cells via a caspase-mediated cleavage of I kappa B alpha. Biochem Pharmacol. 66:1009–1018. 2003. View Article : Google Scholar : PubMed/NCBI

54 

Seo YJ, Kim BS, Chun SY, Park YK, Kang KS and Kwon TG: Apoptotic effects of genistein, biochanin-A and apigenin on LNCaP and PC-3 cells by p21 through transcriptional inhibition of polo-like kinase-1. J Korean Med Sci. 26:1489–1494. 2011. View Article : Google Scholar : PubMed/NCBI

55 

Shen JC, Klein RD, Wei Q, Guan Y, Contois JH, Wang TT, Chang S and Hursting SD: Low-dose genistein induces cyclin-dependent kinase inhibitors and G(1) cell-cycle arrest in human prostate cancer cells. Mol Carcinog. 29:92–102. 2000. View Article : Google Scholar : PubMed/NCBI

56 

Majid S, Kikuno N, Nelles J, Noonan E, Tanaka Y, Kawamoto K, Hirata H, Li LC, Zhao H, Okino ST, et al: Genistein induces the p21WAF1/CIP1 and p16INK4a tumor suppressor genes in prostate cancer cells by epigenetic mechanisms involving active chromatin modification. Cancer Res. 68:2736–2744. 2008. View Article : Google Scholar : PubMed/NCBI

57 

Agarwal R: Cell signaling and regulators of cell cycle as molecular targets for prostate cancer prevention by dietary agents. Biochem Pharmacol. 60:1051–1059. 2000. View Article : Google Scholar : PubMed/NCBI

58 

Wang BF, Wang JS, Lu JF, Kao TH and Chen BH: Antiproliferation effect and mechanism of prostate cancer cell lines as affected by isoflavones from soybean cake. J Agric Food Chem. 57:2221–2232. 2009. View Article : Google Scholar : PubMed/NCBI

59 

Li W, Frame LT, Hoo KA, Li Y, D'Cunha N and Cobos E: Genistein inhibited proliferation and induced apoptosis in acute lymphoblastic leukemia, lymphoma and multiple myeloma cells in vitro. Leuk Lymphoma. 52:2380–2390. 2011. View Article : Google Scholar : PubMed/NCBI

60 

Guo Y, Wang S, Hoot DR and Clinton SK: Suppression of VEGF-mediated autocrine and paracrine interactions between prostate cancer cells and vascular endothelial cells by soy isoflavones. J Nutr Biochem. 18:408–417. 2007. View Article : Google Scholar : PubMed/NCBI

61 

Li Y, Che M, Bhagat S, Ellis KL, Kucuk O, Doerge DR, Abrams J, Cher ML and Sarkar FH: Regulation of gene expression and inhibition of experimental prostate cancer bone metastasis by dietary genistein. Neoplasia. 6:354–363. 2004. View Article : Google Scholar : PubMed/NCBI

62 

Li Y and Sarkar FH: Down-regulation of invasion and angiogenesis-related genes identified by cDNA microarray analysis of PC3 prostate cancer cells treated with genistein. Cancer Lett. 186:157–164. 2002. View Article : Google Scholar : PubMed/NCBI

63 

Sargeant P, Farndale RW and Sage SO: The tyrosine kinase inhibitors methyl 2,5-dihydroxycinnamate and genistein reduce thrombin-evoked tyrosine phosphorylation and Ca2+ entry in human platelets. FEBS Lett. 315:242–246. 1993. View Article : Google Scholar : PubMed/NCBI

64 

Sathyamoorthy N and Wang TT: Differential effects of dietary phyto-oestrogens daidzein and equol on human breast cancer MCF-7 cells. Eur J Cancer. 33:2384–2389. 1997. View Article : Google Scholar : PubMed/NCBI

65 

Gętek M, Czech N, Muc-Wierzgoń M, Grochowska-Niedworok E, Kokot T and Nowakowska-Zajdel E: The active role of leguminous plant components in type 2 diabetes. Evid Based Complement Alternat Med. 2014:2939612014. View Article : Google Scholar : PubMed/NCBI

66 

Mitchell JH, Gardner PT, McPhail DB, Morrice PC, Collins AR and Duthie GG: Antioxidant efficacy of phytoestrogens in chemical and biological model systems. Arch Biochem Biophys. 360:142–148. 1998. View Article : Google Scholar : PubMed/NCBI

67 

Kang KA, Zhang R, Piao MJ, Lee KH, Kim BJ, Kim SY, Kim HS, Kim DH, You HJ and Hyun JW: Inhibitory effects of glycitein on hydrogen peroxide induced cell damage by scavenging reactive oxygen species and inhibiting c-Jun N-terminal kinase. Free Radic Res. 41:720–729. 2007. View Article : Google Scholar : PubMed/NCBI

68 

Ziaei S and Halaby R: Dietary isoflavones and breast cancer risk. Medicines (Basel). 4(pii): E182017. View Article : Google Scholar : PubMed/NCBI

69 

Vitale DC, Piazza C, Melilli B, Drago F and Salomone S: Isoflavones: Estrogenic activity, biological effect and bioavailability. Eur J Drug Metab Pharmacokinet. 38:15–25. 2013. View Article : Google Scholar : PubMed/NCBI

70 

Couse JF, Lindzey J, Grandien K, Gustafsson JA and Korach KS: Tissue distribution and quantitative analysis of estrogen receptor-alpha (ERalpha) and estrogen receptor-beta (ERbeta) messenger ribonucleic acid in the wild-type and ERalpha-knockout mouse. Endocrinology. 138:4613–4621. 1997. View Article : Google Scholar : PubMed/NCBI

71 

Lee JY, Kim HS and Song YS: Genistein as a potential anticancer agent against ovarian cancer. J Tradit Complement Med. 2:96–104. 2012. View Article : Google Scholar : PubMed/NCBI

72 

Mahmoud AM, Al-Alem U, Ali MM and Bosland MC: Genistein increases estrogen receptor beta expression in prostate cancer via reducing its promoter methylation. J Steroid Biochem Mol Biol. 152:62–75. 2015. View Article : Google Scholar : PubMed/NCBI

73 

Fixemer T, Remberger K and Bonkhoff H: Differential expression of the estrogen receptor beta (ERbeta) in human prostate tissue, premalignant changes, and in primary, metastatic, and recurrent prostatic adenocarcinoma. Prostate. 54:79–87. 2003. View Article : Google Scholar : PubMed/NCBI

74 

Kuiper GG, Lemmen JG, Carlsson B, Corton JC, Safe SH, van der Saag PT, van der Burg B and Gustafsson JA: Interaction of estrogenic chemicals and phytoestrogens with estrogen receptor beta. Endocrinology. 139:4252–4263. 1998. View Article : Google Scholar : PubMed/NCBI

75 

Banerjee S, Li Y, Wang Z and Sarkar FH: Multi-targeted therapy of cancer by genistein. Cancer Lett. 269:226–242. 2008. View Article : Google Scholar : PubMed/NCBI

76 

An J, Tzagarakis-Foster C, Scharschmidt TC, Lomri N and Leitman DC: Estrogen receptor beta-selective transcriptional activity and recruitment of coregulators by phytoestrogens. J Biol Chem. 276:17808–17814. 2001. View Article : Google Scholar : PubMed/NCBI

77 

Muthyala RS, Ju YH, Sheng S, Williams LD, Doerge DR, Katzenellenbogen BS, Helferich WG and Katzenellenbogen JA: Equol, a natural estrogenic metabolite from soy isoflavones: Convenient preparation and resolution of R- and S-equols and their differing binding and biological activity through estrogen receptors alpha and beta. Bioorg Med Chem. 12:1559–1567. 2004. View Article : Google Scholar : PubMed/NCBI

78 

Setchell KD, Clerici C, Lephart ED, Cole SJ, Heenan C, Castellani D, Wolfe BE, Nechemias-Zimmer L, Brown NM, Lund TD, et al: S-equol, a potent ligand for estrogen receptor beta, is the exclusive enantiomeric form of the soy isoflavone metabolite produced by human intestinal bacterial flora. Am J Clin Nutr. 81:1072–1079. 2005. View Article : Google Scholar : PubMed/NCBI

79 

Song TT, Hendrich S and Murphy PA: Estrogenic activity of glycitein, a soy isoflavone. J Agric Food Chem. 47:1607–1610. 1999. View Article : Google Scholar : PubMed/NCBI

80 

Wang H, Li J, Gao Y, Xu Y, Pan Y, Tsuji I, Sun ZJ and Li XM: Xeno-oestrogens and phyto-oestrogens are alternative ligands for the androgen receptor. Asian JAndrol. 12:535–547. 2010. View Article : Google Scholar

81 

Lund TD, Munson DJ, Haldy ME, Setchell KD, Lephart ED and Handa RJ: Equol is a novel anti-androgen that inhibits prostate growth and hormone feedback. Biol Reprod. 70:1188–1195. 2004. View Article : Google Scholar : PubMed/NCBI

82 

Itsumi M, Shiota M, Takeuchi A, Kashiwagi E, Inokuchi J, Tatsugami K, Kajioka S, Uchiumi T, Naito S, Eto M and Yokomizo A: Equol inhibits prostate cancer growth through degradation of androgen receptor by S-phase kinase-associated protein 2. Cancer Sci. 107:1022–1028. 2016. View Article : Google Scholar : PubMed/NCBI

83 

Pratt WB and Toft DO: Steroid receptor interactions with heat shock protein and immunophilin chaperones. Endocr Rev. 18:306–360. 1997. View Article : Google Scholar : PubMed/NCBI

84 

Basak S, Pookot D, Noonan EJ and Dahiya R: Genistein down-regulates androgen receptor by modulating HDAC6-Hsp90 chaperone function. Mol Cancer Ther. 7:3195–3202. 2008. View Article : Google Scholar : PubMed/NCBI

85 

Chen L, Meng S, Wang H, Bali P, Bai W, Li B, Atadja P, Bhalla KN and Wu J: Chemical ablation of androgen receptor in prostate cancer cells by the histone deacetylase inhibitor LAQ824. Mol Cancer Ther. 4:1311–1319. 2005. View Article : Google Scholar : PubMed/NCBI

86 

Li Y, Wang Z, Kong D, Li R, Sarkar SH and Sarkar FH: Regulation of Akt/FOXO3a/GSK-3beta/AR signaling network by isoflavone in prostate cancer cells. J Biol Chem. 283:27707–27716. 2008. View Article : Google Scholar : PubMed/NCBI

87 

Lazarevic B, Karlsen SJ and Saatcioglu F: Genistein differentially modulates androgen-responsive gene expression and activates JNK in LNCaP cells. Oncol Rep. 19:1231–1235. 2008.PubMed/NCBI

88 

Maggiolini M, Vivacqua A, Carpino A, Bonofiglio D, Fasanella G, Salerno M, Picard D and Andó S: The mutant androgen receptor T877A mediates the proliferative but not the cytotoxic dose-dependent effects of genistein and quercetin on human LNCaP prostate cancer cells. Mol Pharmacol. 62:1027–1035. 2002. View Article : Google Scholar : PubMed/NCBI

89 

Gao S, Liu GZ and Wang Z: Modulation of androgen receptor-dependent transcription by resveratrol and genistein in prostate cancer cells. Prostate. 59:214–225. 2004. View Article : Google Scholar : PubMed/NCBI

90 

Mahmoud AM, Zhu T, Parray A, Siddique HR, Yang W, Saleem M and Bosland MC: Differential effects of genistein on prostate cancer cells depend on mutational status of the androgen receptor. PLoS One. 8:e784792013. View Article : Google Scholar : PubMed/NCBI

91 

Veldscholte J, Ris-Stalpers C, Kuiper GG, Jenster G, Berrevoets C, Claassen E, van Rooij HC, Trapman J, Brinkmann AO and Mulder E: A mutation in the ligand binding domain of the androgen receptor of human LNCaP cells affects steroid binding characteristics and response to anti-androgens. Biochem Biophys Res Commun. 173:534–540. 1990. View Article : Google Scholar : PubMed/NCBI

92 

Weng C, Cai J, Wen J, Yuan H, Yang K, Imperato-McGinley J and Zhu YS: Differential effects of estrogen receptor ligands on regulation of dihydrotestosterone-induced cell proliferation in endothelial and prostate cancer cells. Int J Oncol. 42:327–337. 2013. View Article : Google Scholar : PubMed/NCBI

93 

Takahashi Y, Hursting SD, Perkins SN, Wang TC and Wang TT: Genistein affects androgen-responsive genes through both androgen- and estrogen-induced signaling pathways. Mol Carcinog. 45:18–25. 2006. View Article : Google Scholar : PubMed/NCBI

94 

Wang J, Eltoum IE and Lamartiniere CA: Genistein alters growth factor signalling in transgenic prostate model (TRAMP). Mol Cell Endocrinol. 219:171–180. 2004. View Article : Google Scholar : PubMed/NCBI

95 

Lateef A, Khan AQ, Tahir M, Khan R, Rehman MU, Ali F, Hamiza OO and Sultana S: Androgen deprivation by flutamide modulates uPAR, MMP-9 expressions, lipid profile, and oxidative stress: Amelioration by daidzein. Mol Cell Biochem. 374:49–59. 2013. View Article : Google Scholar : PubMed/NCBI

96 

Loutchanwoot P, Srivilai P and Jarry H: Lack of anti-androgenic effects of equol on reproductive neuroendocrine function in the adult male rat. Horm Behav. 65:22–31. 2014. View Article : Google Scholar : PubMed/NCBI

97 

Legg RL, Tolman JR, Lovinger CT, Lephart ED, Setchell KD and Christensen MJ: Diets high in selenium and isoflavones decrease androgen-regulated gene expression in healthy rat dorsolateral prostate. Reprod Biol Endocrinol. 6:572008. View Article : Google Scholar : PubMed/NCBI

98 

Onozawa M, Fukuda K, Ohtani M, Akaza H, Sugimura T and Wakabayashi K: Effects of soybean isoflavones on cell growth and apoptosis of the human prostatic cancer cell line LNCaP. Jpn J Clin Oncol. 28:360–363. 1998. View Article : Google Scholar : PubMed/NCBI

99 

Davis JN, Muqim N, Bhuiyan M, Kucuk O, Pienta KJ and Sarkar FH: Inhibition of prostate specific antigen expression by genistein in prostate cancer cells. Int J Oncol. 16:1091–1097. 2000.PubMed/NCBI

100 

Peternac D, Klima I, Cecchini MG, Schwaninger R, Studer UE and Thalmann GN: Agents used for chemoprevention of prostate cancer may influence PSA secretion independently of cell growth in the LNCaP model of human prostate cancer progression. Prostate. 68:1307–1318. 2008. View Article : Google Scholar : PubMed/NCBI

101 

Hussain M, Banerjee M, Sarkar FH, Djuric Z, Pollak MN, Doerge D, Fontana J, Chinni S, Davis J, Forman J, et al: Soy isoflavones in the treatment of prostate cancer. Nutr Cancer. 47:111–117. 2003. View Article : Google Scholar : PubMed/NCBI

102 

Kumar NB, Cantor A, Allen K, Riccardi D, Besterman-Dahan K, Seigne J, Helal M, Salup R and Pow-Sang J: The specific role of isoflavones in reducing prostate cancer risk. Prostate. 59:141–147. 2004. View Article : Google Scholar : PubMed/NCBI

103 

Dalais FS, Meliala A, Wattanapenpaiboon N, Frydenberg M, Suter DA, Thomson WK and Wahlqvist ML: Effects of a diet rich in phytoestrogens on prostate-specific antigen and sex hormones in men diagnosed with prostate cancer. Urology. 64:510–515. 2004. View Article : Google Scholar : PubMed/NCBI

104 

Schröder FH, Roobol MJ, Boevé ER, de Mutsert R, Zuijdgeest-van Leeuwen SD, Kersten I, Wildhagen MF and van Helvoort A: Randomized, double-blind, placebo-controlled crossover study in men with prostate cancer and rising PSA: Effectiveness of a dietary supplement. Eur Urol. 48:922–931. 2005. View Article : Google Scholar : PubMed/NCBI

105 

Kranse R, Dagnelie PC, van Kemenade MC, de Jong FH, Blom JH, Tijburg LB, Weststrate JA and Schröder FH: Dietary intervention in prostate cancer patients: PSA response in a randomized double-blind placebo-controlled study. Int J Cancer. 113:835–840. 2005. View Article : Google Scholar : PubMed/NCBI

106 

Vaishampayan U, Hussain M, Banerjee M, Seren S, Sarkar FH, Fontana J, Forman JD, Cher ML, Powell I, Pontes JE and Kucuk O: Lycopene and soy isoflavones in the treatment of prostate cancer. Nutr Cancer. 59:1–7. 2007. View Article : Google Scholar : PubMed/NCBI

107 

Grainger EM, Schwartz SJ, Wang S, Unlu NZ, Boileau TW, Ferketich AK, Monk JP, Gong MC, Bahnson RR, DeGroff VL and Clinton SK: A combination of tomato and soy products for men with recurring prostate cancer and rising prostate specific antigen. Nutr Cancer. 60:145–154. 2008. View Article : Google Scholar : PubMed/NCBI

108 

Hamilton-Reeves JM, Rebello SA, Thomas W, Kurzer MS and Slaton JW: Effects of soy protein isolate consumption on prostate cancer biomarkers in men with HGPIN, ASAP, and low-grade prostate cancer. Nutr Cancer. 60:7–13. 2008. View Article : Google Scholar : PubMed/NCBI

109 

Pendleton JM, Tan WW, Anai S, Chang M, Hou W, Shiverick KT and Rosser CJ: Phase II trial of isoflavone in prostate-specific antigen recurrent prostate cancer after previous local therapy. BMC Cancer. 8:1322008. View Article : Google Scholar : PubMed/NCBI

110 

Kumar NB, Kang L, Pow-Sang J, Xu P, Allen K, Riccardi D, Besterman-Dahan K and Krischer JP: Results of a randomized phase I dose-finding trial of several doses of isoflavones in men with localized prostate cancer: Administration prior to radical prostatectomy. J Soc Integr Oncol. 8:3–13. 2010.PubMed/NCBI

111 

deVere White RW, Tsodikov A, Stapp EC, Soares SE, Fujii H and Hackman RM: Effects of a high dose, aglycone-rich soy extract on prostate-specific antigen and serum isoflavone concentrations in men with localized prostate cancer. Nutr Cancer. 62:1036–1043. 2010. View Article : Google Scholar : PubMed/NCBI

112 

Kwan W, Duncan G, Van Patten C, Liu M and Lim J: A phase II trial of a soy beverage for subjects without clinical disease with rising prostate-specific antigen after radical radiation for prostate cancer. Nutr Cancer. 62:198–207. 2010. View Article : Google Scholar : PubMed/NCBI

113 

Lazarevic B, Boezelijn G, Diep LM, Kvernrod K, Ogren O, Ramberg H, Moen A, Wessel N, Berg RE, Egge-Jacobsen W, et al: Efficacy and safety of short-term genistein intervention in patients with localized prostate cancer prior to radical prostatectomy: A randomized, placebo-controlled, double-blind Phase 2 clinical trial. Nutr Cancer. 63:889–898. 2011. View Article : Google Scholar : PubMed/NCBI

114 

Hamilton-Reeves JM, Banerjee S, Banerjee SK, Holzbeierlein JM, Thrasher JB, Kambhampati S, Keighley J and Van Veldhuizen P: Short-term soy isoflavone intervention in patients with localized prostate cancer: A randomized, double-blind, placebo-controlled trial. PLoS One. 8:e683312013. View Article : Google Scholar : PubMed/NCBI

115 

van Die MD, Bone KM, Emery J, Williams SG, Pirotta MV and Paller CJ: Phytotherapeutic interventions in the management of biochemically recurrent prostate cancer: A systematic review of randomised trials. BJU Int. 117 Suppl 4:S17–S34. 2016. View Article : Google Scholar

116 

van Die MD, Bone KM, Williams SG and Pirotta MV: Soy and soy isoflavones in prostate cancer: A systematic review and meta-analysis of randomized controlled trials. BJU Int. 113:E119–E130. 2014. View Article : Google Scholar : PubMed/NCBI

117 

Posadzki P, Lee MS, Onakpoya I, Lee HW, Ko BS and Ernst E: Dietary supplements and prostate cancer: A systematic review of double-blind, placebo-controlled randomised clinical trials. Maturitas. 75:125–130. 2013. View Article : Google Scholar : PubMed/NCBI

118 

Zhu Y, Xu H, Li M, Gao Z, Huang J, Liu L, Huang X and Li Y: Daidzein impairs Leydig cell testosterone production and Sertoli cell function in neonatal mouse testes: An in vitro study. Mol Med Rep. 14:5325–5333. 2016. View Article : Google Scholar : PubMed/NCBI

119 

Lehraiki A, Messiaen S, Berges R, Canivenc-Lavier MC, Auger J, Habert R and Levacher C: Antagonistic effects of gestational dietary exposure to low-dose vinclozolin and genistein on rat fetal germ cell development. Reprod Toxicol. 31:424–430. 2011. View Article : Google Scholar : PubMed/NCBI

120 

Caceres S, Silvan G, Martinez-Fernandez L, Illera MJ, Millan P, Monsalve B, Peña L and Illera JC: The effects of isoflavones on androgens and glucocorticoids during puberty on male Wistar rats. Reprod Domest Anim. 49:611–617. 2014. View Article : Google Scholar : PubMed/NCBI

121 

Yi MA, Son HM, Lee JS, Kwon CS, Lim JK, Yeo YK, Park YS and Kim JS: Regulation of male sex hormone levels by soy isoflavones in rats. Nutr Cancer. 42:206–210. 2002. View Article : Google Scholar : PubMed/NCBI

122 

Weber KS, Setchell KD, Stocco DM and Lephart ED: Dietary soy-phytoestrogens decrease testosterone levels and prostate weight without altering LH, prostate 5alpha-reductase or testicular steroidogenic acute regulatory peptide levels in adult male Sprague-Dawley rats. J Endocrinol. 170:591–599. 2001. View Article : Google Scholar : PubMed/NCBI

123 

Kumar NB, Krischer JP, Allen K, Riccardi D, Besterman-Dahan K, Salup R, Kang L, Xu P and Pow-Sang J: A Phase II randomized, placebo-controlled clinical trial of purified isoflavones in modulating steroid hormones in men diagnosed with localized prostate cancer. Nutr Cancer. 59:163–168. 2007. View Article : Google Scholar : PubMed/NCBI

124 

Hamilton-Reeves JM, Vazquez G, Duval SJ, Phipps WR, Kurzer MS and Messina MJ: Clinical studies show no effects of soy protein or isoflavones on reproductive hormones in men: Results of a meta-analysis. Fertil Steril. 94:997–1007. 2010. View Article : Google Scholar : PubMed/NCBI

125 

Adlercreutz H, Höckerstedt K, Bannwart C, Bloigu S, Hämäläinen E, Fotsis T and Ollus A: Effect of dietary components, including lignans and phytoestrogens, on enterohepatic circulation and liver metabolism of estrogens and on sex hormone binding globulin (SHBG). J Steroid Biochem. 27:1135–1144. 1987. View Article : Google Scholar : PubMed/NCBI

126 

Berrino F, Bellati C, Secreto G, Camerini E, Pala V, Panico S, Allegro G and Kaaks R: Reducing bioavailable sex hormones through a comprehensive change in diet: The diet and androgens (DIANA) randomized trial. Cancer Epidemiol Biomarkers Prev. 10:25–33. 2001.PubMed/NCBI

127 

Sawada N, Iwasaki M, Inoue M, Sasazuki S, Yamaji T, Shimazu T and Tsugane S: Japan Public Health Center-based Prospective Study Group: Plasma testosterone and sex hormone-binding globulin concentrations and the risk of prostate cancer among Japanese men: A nested case-control study. Cancer Sci. 101:2652–2657. 2010. View Article : Google Scholar : PubMed/NCBI

128 

Tanaka M, Fujimoto K, Chihara Y, Torimoto K, Yoneda T, Tanaka N, Hirayama A, Miyanaga N, Akaza H and Hirao Y: Isoflavone supplements stimulated the production of serum equol and decreased the serum dihydrotestosterone levels in healthy male volunteers. Prostate Cancer Prostatic Dis. 12:247–252. 2009. View Article : Google Scholar : PubMed/NCBI

129 

Bae M, Woo M, Kusuma IW, Arung ET, Yang CH and Kim YU: Inhibitory effects of isoflavonoids on rat prostate testosterone 5α-reductase. J Acupunct Meridian Stud. 5:319–322. 2012. View Article : Google Scholar : PubMed/NCBI

130 

Hu GX, Zhao BH, Chu YH, Zhou HY, Akingbemi BT, Zheng ZQ and Ge RS: Effects of genistein and equol on human and rat testicular 3beta-hydroxysteroid dehydrogenase and 17beta-hydroxysteroid dehydrogenase 3 activities. Asian J Androl. 12:519–526. 2010. View Article : Google Scholar : PubMed/NCBI

131 

McVey MJ, Cooke GM and Curran IH: Altered testicular microsomal steroidogenic enzyme activities in rats with lifetime exposure to soy isoflavones. J Steroid Biochem Mol Biol. 92:435–446. 2004. View Article : Google Scholar : PubMed/NCBI

132 

Ohno S, Nakajima Y, Inoue K, Nakazawa H and Nakajin S: Genistein administration decreases serum corticosterone and testosterone levels in rats. Life Sci. 74:733–742. 2003. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

February 2019
Volume 10 Issue 2

Print ISSN: 2049-9450
Online ISSN:2049-9469

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Sivoňová, M.K., Kaplán, P., Tatarková, Z., Lichardusová, L., Dušenka, R., & Jurečeková, J. (2019). Androgen receptor and soy isoflavones in prostate cancer (Review). Molecular and Clinical Oncology, 10, 191-204. https://doi.org/10.3892/mco.2018.1792
MLA
Sivoňová, M. K., Kaplán, P., Tatarková, Z., Lichardusová, L., Dušenka, R., Jurečeková, J."Androgen receptor and soy isoflavones in prostate cancer (Review)". Molecular and Clinical Oncology 10.2 (2019): 191-204.
Chicago
Sivoňová, M. K., Kaplán, P., Tatarková, Z., Lichardusová, L., Dušenka, R., Jurečeková, J."Androgen receptor and soy isoflavones in prostate cancer (Review)". Molecular and Clinical Oncology 10, no. 2 (2019): 191-204. https://doi.org/10.3892/mco.2018.1792