Open Access

Genome profiling revealed the activation of IL2RG/JAK3/STAT5 in peripheral T‑cell lymphoma expressing the ITK‑SYK fusion gene

  • Authors:
    • Lei‑Lei Zhang
    • Hua‑Xiong Pan
    • Yi‑Xuan Wang
    • Tao Guo
    • Lin Liu
  • View Affiliations

  • Published online on: September 20, 2019     https://doi.org/10.3892/ijo.2019.4882
  • Pages: 1077-1089
  • Copyright: © Zhang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Peripheral T‑cell lymphomas (PTCLs) are heterogeneous malignancies that are types of non‑Hodgkin lymphomas; patients with this disease have poor prognoses. The IL‑2‑inducible T‑cell kinase‑spleen tyrosine kinase (ITK‑SYK) fusion gene, the first recurrent chromosome translocation in PTCL‑not otherwise specified (NOS), can drive cellular transformation and the development of T‑cell lymphoma in mouse models. The aim of the current study was to investigate the signal transduction pathways downstream of ITK‑SYK. The authors constructed a lentiviral vector to overexpress the ITK‑SYK fusion gene in Jurkat cells. By using Signal‑Net and cluster analyses of microarray data, the authors identified the tyrosine‑protein kinase JAK (JAK)3/STAT5 signalling pathway as a downstream pathway of ITK‑SYK, activation of which mediates the effects of ITK‑SYK on tumourigenesis. JAK3‑selective inhibitor tofacitinib abrogated the phosphorylation of downstream signalling molecule STAT5, supressed cell growth, induced cell apoptosis and arrested the cell cycle at the G1/S phase in ITK‑SYK+ Jurkat cells. In a xenograft mouse model, tumour growth was significantly delayed by tofacitinib. Since JAK3 associates with interleukin‑2 receptor subunit γ (IL2RG) only, siRNA‑specific knockdown of IL2RG showed the same effect as tofacitinib treatment in vitro. These results first demonstrated that the activation of the IL2RG/JAK3/STAT5 signalling pathway contributed greatly to the oncogenic progress regulated by ITK‑SYK, supporting further investigation of JAK3 inhibitors for the treatment of PTCLs carrying the ITK‑SYK fusion gene.

References

1 

Broccoli A and Zinzani PL: Peripheral T-cell lymphoma, not otherwise specified. Blood. 129:1103–1112. 2017. View Article : Google Scholar : PubMed/NCBI

2 

Said J and Pinter-Brown L: Clinical and pathological diagnosis of peripheral T-cell lymphoma and emerging treatment options: A case-based discussion. Clin Adv Hematol Oncol. 7 (Suppl)(S1): S4–13. S152009.

3 

Bisig B, Gaulard P and de Leval L: New biomarkers in T-cell lymphomas. Best Pract Res Clin Haematol. 25:13–28. 2012. View Article : Google Scholar : PubMed/NCBI

4 

Boddicker RL, Razidlo GL, Dasari S, Zeng Y, Hu G, Knudson RA, Greipp PT, Davila JI, Johnson SH, Porcher JC, et al: Integrated mate-pair and RNA sequencing identifies novel, targetable gene fusions in peripheral T-cell lymphoma. Blood. 128:1234–1245. 2016. View Article : Google Scholar : PubMed/NCBI

5 

Sandell RF, Boddicker RL and Feldman AL: Genetic landscape and classification of peripheral T cell lymphomas. Curr Oncol Rep. 19:282017. View Article : Google Scholar : PubMed/NCBI

6 

Streubel B, Vinatzer U, Willheim M, Raderer M and Chott A: Novel t(5;9)(q33;q22) fuses ITK to SYK in unspecified peripheral T-cell lymphoma. Leukemia. 20:313–318. 2006. View Article : Google Scholar

7 

Bach MP, Hug E, Werner M, Holch J, Sprissler C, Pechloff K, Zirlik K, Zeiser R, Dierks C, Ruland J and Jumaa H: Premature terminal differentiation protects from deregulated lymphocyte activation by ITK-Syk. J Immunol. 192:1024–1033. 2014. View Article : Google Scholar : PubMed/NCBI

8 

Huang Y, Moreau A, Dupuis J, Streubel B, Petit B, Le Gouill S, Martin-Garcia N, Copie-Bergman C, Gaillard F, Qubaja M, et al: Peripheral T-cell lymphomas with a follicular growth pattern are derived from follicular helper T cells (TFH) and may show overlapping features with angioimmunoblastic T-cell lymphomas. Am J Surg Pathol. 33:682–690. 2009. View Article : Google Scholar : PubMed/NCBI

9 

Attygalle AD, Feldman AL and Dogan A: ITK/SYK translocation in angioimmunoblastic T-cell lymphoma. Am J Surg Pathol. 37:1456–1457. 2013. View Article : Google Scholar : PubMed/NCBI

10 

Fathi NN, Mohammad DK, Görgens A, Andaloussi SE, Zain R, Nore BF and Smith CIE: Translocation-generated ITK-FER and ITK-SYK fusions induce STAT3 phosphorylation and CD69 expression. Biochem Biophys Res Commun. 504:749–752. 2018. View Article : Google Scholar : PubMed/NCBI

11 

Andreotti AH, Schwartzberg PL, Joseph RE and Berg LJ: T-cell signaling regulated by the Tec family kinase, Itk. Cold Spring Harb Perspect Biol. 2:a0022872010. View Article : Google Scholar : PubMed/NCBI

12 

Prince AL, Yin CC, Enos ME, Felices M and Berg LJ: The Tec kinases Itk and Rlk regulate conventional versus innate T-cell development. Immunol Rev. 228:115–131. 2009. View Article : Google Scholar : PubMed/NCBI

13 

Rickert RC: New insights into pre-BCR and BCR signalling with relevance to B cell malignancies. Nat Rev Immunol. 13:578–591. 2013. View Article : Google Scholar : PubMed/NCBI

14 

Tsang E, Giannetti AM, Shaw D, Dinh M, Tse JK, Gandhi S, Ho H, Wang S, Papp E and Bradshaw JM: Molecular mechanism of the Syk activation switch. J Biol Chem. 283:32650–32659. 2008. View Article : Google Scholar : PubMed/NCBI

15 

Hussain A, Faryal R, Nore BF, Mohamed AJ and Smith CI: Phosphatidylinositol-3-kinase-dependent phosphorylation of SLP-76 by the lymphoma-associated ITK-SYK fusion-protein. Biochem Biophys Res Commun. 390:892–896. 2009. View Article : Google Scholar : PubMed/NCBI

16 

Hussain A, Mohammad DK, Gustafsson MO, Uslu M, Hamasy A, Nore BF, Mohamed AJ and Smith CI: Signaling of the ITK (IL2-inducible T-cell kinase)-SYK fusion kinase is dependent on adapter SLP-76 (SH2 domain-containing leukocyte protein of 76 kD) and on the adapter function of the kinases SYK/ZAP70 (zeta-chain [TCR] associated protein kinase 70 kD). J Biol Chem. 288:7338–7350. 2013. View Article : Google Scholar : PubMed/NCBI

17 

Dierks C, Adrian F, Fisch P, Ma H, Maurer H, Herchenbach D, Forster CU, Sprissler C, Liu G, Rottmann S, et al: The ITK-SYK fusion oncogene induces a T-cell lymphoproliferative disease in mice mimicking human disease. Cancer Res. 70:6193–6204. 2010. View Article : Google Scholar : PubMed/NCBI

18 

Pechloff K, Holch J, Ferch U, Schweneker M, Brunner K, Kremer M, Sparwasser T, Quintanilla-Martinez L, Zimber-Strobl U, Streubel B, et al: The fusion kinase ITK-SYK mimics a T cell receptor signal and drives oncogenesis in conditional mouse models of peripheral T cell lymphoma. J Exp Med. 207:1031–1044. 2010. View Article : Google Scholar : PubMed/NCBI

19 

Kanehisa M and Goto S: KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28:27–30. 2000. View Article : Google Scholar

20 

Kanehisa M, Sato Y, Kawashima M, Furumichi M and Tanabe M: KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res. 44:D457–D462. 2016. View Article : Google Scholar :

21 

Huang da W, Sherman BT and Lempicki RA: Bioinformatics enrichment tools: Paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 37:1–13. 2009. View Article : Google Scholar

22 

Huang da W, Sherman BT and Lempicki RA: Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 4:44–57. 2009. View Article : Google Scholar : PubMed/NCBI

23 

Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B and Ideker T: Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 13:2498–2504. 2003. View Article : Google Scholar : PubMed/NCBI

24 

Chen KT, Hour MJ, Tsai SC, Chung JG, Kuo SC, Lu CC, Chiu YJ, Chuang YH and Yang JS: The novel synthesized 6-fluoro- (3-fluorophenyl)-4-(3-methoxyanilino)quinazoline (LJJ-10) compound exhibits anti-metastatic effects in human osteosarcoma U-2 OS cells through targeting insulin-like growth factor-I receptor. Int J Oncol. 39:611–619. 2011.PubMed/NCBI

25 

Liao CL, Lai KC, Huang AC, Yang JS, Lin JJ, Wu SH, Gibson Wood W, Lin JG and Chung JG: Gallic acid inhibits migration and invasion in human osteosarcoma U-2 OS cells through suppressing the matrix metalloproteinase-2/-9, protein kinase B (PKB) and PKC signaling pathways. Food Chem Toxicol. 50:1734–1740. 2012. View Article : Google Scholar : PubMed/NCBI

26 

Khokhlova ON, Tukhovskaya EA, Kravchenko IN, Sadovnikova ES, Pakhomova IA, Kalabina EA, Lobanov AV, Shaykhutdinova ER, Ismailova AM and Murashev AN: Using Tiletamine-Zolazepam-Xylazine anesthesia compared to CO2-inhalation for terminal clinical chemistry, hematology, and coagulation analysis in mice. J Pharmacol Toxicol Methods. 84:11–19. 2017. View Article : Google Scholar

27 

Rigby S, Huang Y, Streubel B, Chott A, Du MQ, Turner SD and Bacon CM: The lymphoma-associated fusion tyrosine kinase ITK-SYK requires pleckstrin homology domain-mediated membrane localization for activation and cellular transformation. J Biol Chem. 284:26871–26881. 2009. View Article : Google Scholar : PubMed/NCBI

28 

Eißmann M, Melzer IM, Fernandez SB, Michel G, Hrabě de Angelis M, Hoefler G, Finkenwirth P, Jauch A, Schoell B, Grez M, et al: Overexpression of the anti-apoptotic protein AVEN contributes to increased malignancy in hematopoietic neoplasms. Oncogene. 32:2586–2591. 2013. View Article : Google Scholar

29 

Hekmatnejad M, Conwell S, Lok SM, Kutach A, Shaw D, Fang E and Swinney DC: Insights into kinetic mechanism of Janus kinase 3 and its inhibition by tofacitinib. Arch Biochem Biophys. 612:22–34. 2016. View Article : Google Scholar : PubMed/NCBI

30 

O'Shea JJ, Schwartz DM, Villarino AV, Gadina M, McInnes IB and Laurence A: The JAK-STAT pathway: Impact on human disease and therapeutic intervention. Annu Rev Med. 66:311–328. 2015. View Article : Google Scholar : PubMed/NCBI

31 

Goll GL and Kvien TK: New-generation JAK inhibitors: How selective can they be? Lancet. 391:2477–2478. 2018. View Article : Google Scholar : PubMed/NCBI

32 

Ross JA, Spadaro M, Rosado DC, Cavallo F, Kirken RA and Pericle F: Inhibition of JAK3 with a novel, selective and orally active small molecule induces therapeutic response in T-cell malignancies. Leukemia. 28:941–944. 2014. View Article : Google Scholar

33 

Kwatra SG: The role of Jak3 signaling in IL-17 expression in malignant cutaneous T-cell lymphoma. J Invest Dermatol. 131:1954–1956. 2011. View Article : Google Scholar : PubMed/NCBI

34 

Cornejo MG, Kharas MG, Werneck MB, Le Bras S, Moore SA, Ball B, Beylot-Barry M, Rodig SJ, Aster JC, Lee BH, et al: Constitutive JAK3 activation induces lymphoproliferative syndromes in murine bone marrow transplantation models. Blood. 113:2746–2754. 2009. View Article : Google Scholar : PubMed/NCBI

35 

Cornejo MG, Boggon TJ and Mercher T: JAK3: A two-faced player in hematological disorders. Int J Biochem Cell Biol. 41:2376–2379. 2009. View Article : Google Scholar : PubMed/NCBI

36 

Tomita M, Kawakami H, Uchihara JN, Okudaira T, Masuda M, Matsuda T, Tanaka Y, Ohshiro K and Mori N: Inhibition of constitutively active Jak-Stat pathway suppresses cell growth of human T-cell leukemia virus type 1-infected T-cell lines and primary adult T-cell leukemia cells. Retrovirology. 3:222006. View Article : Google Scholar : PubMed/NCBI

37 

Krejsgaard T, Vetter-Kauczok CS, Woetmann A, Lovato P, Labuda T, Eriksen KW, Zhang Q, Becker JC and Ødum N: Jak3- and JNK-dependent vascular endothelial growth factor expression in cutaneous T-cell lymphoma. Leukemia. 20:1759–1766. 2006. View Article : Google Scholar : PubMed/NCBI

38 

Lauenborg B, Christensen L, Ralfkiaer U, Kopp KL, Jønson L, Dabelsteen S, Bonefeld CM, Geisler C, Gjerdrum LM, Zhang Q, et al: Malignant T cells express lymphotoxin α and drive endothelial activation in cutaneous T cell lymphoma. Oncotarget. 6:15235–15249. 2015. View Article : Google Scholar : PubMed/NCBI

39 

Yan J, Li B, Lin B, Lee PT, Chung TH, Tan J, Bi C, Lee XT, Selvarajan V, Ng SB, et al: EZH2 phosphorylation by JAK3 mediates a switch to noncanonical function in natural killer/T-cell lymphoma. Blood. 128:948–958. 2016. View Article : Google Scholar : PubMed/NCBI

40 

Neumann M, Vosberg S, Schlee C, Heesch S, Schwartz S, Gökbuget N, Hoelzer D, Graf A, Krebs S, Bartram I, et al: Mutational spectrum of adult T-ALL. Oncotarget. 6:2754–2766. 2015. View Article : Google Scholar : PubMed/NCBI

41 

Stengel A, Kern W, Zenger M, Perglerová K, Schnittger S, Haferlach T and Haferlach C: Genetic characterization of T-PLL reveals two major biologic subgroups and JAK3 mutations as prognostic marker. Genes Chromosomes Cancer. 55:82–94. 2016. View Article : Google Scholar

42 

Wu AY, Yang HC, Lin CM, Wu BD, Qu QS, Zheng YH, Wei H, Mei XQ, Zeng ZH and Ma XD: The transcriptome study of subtype M2 acute myeloblastic leukemia. Cell Biochem Biophys. 72:653–656. 2015. View Article : Google Scholar

43 

Degryse S, de Bock CE, Cox L, Demeyer S, Gielen O, Mentens N, Jacobs K, Geerdens E, Gianfelici V, Hulselmans G, et al: JAK3 mutants transform hematopoietic cells through JAK1 activation, causing T-cell acute lymphoblastic leukemia in a mouse model. Blood. 124:3092–3100. 2014. View Article : Google Scholar : PubMed/NCBI

44 

Jeong EG, Kim MS, Nam HK, Min CK, Lee S, Chung YJ, Yoo NJ and Lee SH: Somatic mutations of JAK1 and JAK3 in acute leukemias and solid cancers. Clin Cancer Res. 14:3716–3721. 2008. View Article : Google Scholar : PubMed/NCBI

45 

Waldmann TA and Chen J: Disorders of the JAK/STAT pathway in T cell lymphoma pathogenesis: Implications for immunotherapy. Annu Rev Immunol. 35:533–550. 2017. View Article : Google Scholar : PubMed/NCBI

46 

Kimura H, Karube K, Ito Y, Hirano K, Suzuki M, Iwata S and Seto M: Rare occurrence of JAK3 mutations in natural killer cell neoplasms in Japan. Leuk Lymphoma. 55:962–963. 2014. View Article : Google Scholar

47 

Lee S, Park HY, Kang SY, Kim SJ, Hwang J, Lee S, Kwak SH, Park KS, Yoo HY, Kim WS, et al: Genetic alterations of JAK/STAT cascade and histone modification in extranodal NK/T-cell lymphoma nasal type. Oncotarget. 6:17764–17776. 2015.PubMed/NCBI

48 

Lindemann MJ, Benczik M and Gaffen SL: Anti-apoptotic signaling by the interleukin-2 receptor reveals a function for cytoplasmic tyrosine residues within the common gamma (gamma c) receptor subunit. J Biol Chem. 278:10239–10249. 2003. View Article : Google Scholar : PubMed/NCBI

49 

Sprissler C, Belenki D, Maurer H, Aumann K, Pfeifer D, Klein C, Müller TA, Kissel S, Hülsdünker J, Alexandrovski J, et al: Depletion of STAT5 blocks TEL-SYK-induced APMF-type leukemia with myelofibrosis and myelodysplasia in mice. Blood Cancer J. 4:e2402014. View Article : Google Scholar : PubMed/NCBI

50 

Kiel MJ, Velusamy T, Rolland D, Sahasrabuddhe AA, Chung F, Bailey NG, Schrader A, Li B, Li JZ, Ozel AB, et al: Integrated genomic sequencing reveals mutational landscape of T-cell prolymphocytic leukemia. Blood. 124:1460–1472. 2014. View Article : Google Scholar : PubMed/NCBI

51 

Feldman AL, Sun DX, Law ME, Novak AJ, Attygalle AD, Thorland EC, Fink SR, Vrana JA, Caron BL, Morice WG, et al: Overexpression of Syk tyrosine kinase in peripheral T-cell lymphomas. Leukemia. 22:1139–1143. 2008. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

November 2019
Volume 55 Issue 5

Print ISSN: 1019-6439
Online ISSN:1791-2423

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Zhang, L., Pan, H., Wang, Y., Guo, T., & Liu, L. (2019). Genome profiling revealed the activation of IL2RG/JAK3/STAT5 in peripheral T‑cell lymphoma expressing the ITK‑SYK fusion gene. International Journal of Oncology, 55, 1077-1089. https://doi.org/10.3892/ijo.2019.4882
MLA
Zhang, L., Pan, H., Wang, Y., Guo, T., Liu, L."Genome profiling revealed the activation of IL2RG/JAK3/STAT5 in peripheral T‑cell lymphoma expressing the ITK‑SYK fusion gene". International Journal of Oncology 55.5 (2019): 1077-1089.
Chicago
Zhang, L., Pan, H., Wang, Y., Guo, T., Liu, L."Genome profiling revealed the activation of IL2RG/JAK3/STAT5 in peripheral T‑cell lymphoma expressing the ITK‑SYK fusion gene". International Journal of Oncology 55, no. 5 (2019): 1077-1089. https://doi.org/10.3892/ijo.2019.4882