Oncological role of HMGA2 (Review)

  • Authors:
    • Shizhen Zhang
    • Qiuping Mo
    • Xiaochen Wang
  • View Affiliations

  • Published online on: August 13, 2019     https://doi.org/10.3892/ijo.2019.4856
  • Pages: 775-788
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

The high mobility group A2 (HMGA2) protein is a non‑histone architectural transcription factor that modulates the transcription of several genes by binding to AT‑rich sequences in the minor groove of B‑form DNA and alters the chromatin structure. As a result, HMGA2 influences a variety of biological processes, including the cell cycle process, DNA damage repair process, apoptosis, senescence, epithelial‑mesenchymal transition and telomere restoration. In addition, the overexpression of HMGA2 is a feature of malignancy, and its elevated expression in human cancer predicts the efficacy of certain chemotherapeutic agents. Accumulating evidence has suggested that the detection of HMGA2 can be used as a routine procedure in clinical tumour analysis.

References

1 

Bustin M and Reeves R: High-mobility-group chromosomal proteins: Architectural components that facilitate chromatin function. Prog Nucleic Acid Res Mol Biol. 54:35–100. 1996. View Article : Google Scholar : PubMed/NCBI

2 

Goodwin GH, Sanders C and Johns EW: A new group of chromatin-associated proteins with a high content of acidic and basic amino acids. Eur J Biochem. 38:14–19. 1973. View Article : Google Scholar : PubMed/NCBI

3 

Bustin M: Revised nomenclature for high mobility group (HMG) chromosomal proteins. Trends Biochem Sci. 26:152–153. 2001. View Article : Google Scholar : PubMed/NCBI

4 

Wood LJ, Maher JF, Bunton TE and Resar LM: The oncogenic properties of the HMG-I gene family. Cancer Res. 60:4256–4261. 2000.PubMed/NCBI

5 

De Martino I, Visone R, Fedele M, Petrocca F, Palmieri D, Martinez Hoyos J, Forzati F, Croce CM and Fusco A: Regulation of microRNA expression by HMGA1 proteins. Oncogene. 28:1432–1442. 2009. View Article : Google Scholar : PubMed/NCBI

6 

Martinez Hoyos J, Fedele M, Battista S, Pentimalli F, Kruhoffer M, Arra C, Orntoft TF, Croce CM and Fusco A: Identification of the genes up- and down-regulated by the high mobility group A1 (HMGA1) proteins: Tissue specificity of the HMGA1-dependent gene regulation. Cancer Res. 64:5728–5735. 2004. View Article : Google Scholar : PubMed/NCBI

7 

Fusco A and Fedele M: Roles of HMGA proteins in cancer. Nat Rev Cancer. 7:899–910. 2007. View Article : Google Scholar : PubMed/NCBI

8 

Fedele M, Battista S, Kenyon L, Baldassarre G, Fidanza V, Klein-Szanto AJ, Parlow AF, Visone R, Pierantoni GM, Outwater E, et al: Overexpression of the HMGA2 gene in transgenic mice leads to the onset of pituitary adenomas. Oncogene. 21:3190–3198. 2002. View Article : Google Scholar : PubMed/NCBI

9 

Huth JR, Bewley CA, Nissen MS, Evans JN, Reeves R, Gronenborn AM and Clore GM: The solution structure of an HMG-I(Y)-DNA complex defines a new architectural minor groove binding motif. Nat Struct Biol. 4:657–665. 1997. View Article : Google Scholar : PubMed/NCBI

10 

Thanos D and Maniatis T: The high mobility group protein HMG I(Y) is required for NF-kappa B-dependent virus induction of the human IFN-beta gene. Cell. 71:777–789. 1992. View Article : Google Scholar : PubMed/NCBI

11 

Tallini G and Dal Cin P: HMGI(Y) and HMGI-C dysregulation: A common occurrence in human tumors. Adv Anat Pathol. 6:237–246. 1999. View Article : Google Scholar : PubMed/NCBI

12 

Rustighi A, Mantovani F, Fusco A, Giancotti V and Manfioletti G: Sp1 and CTF/NF-1 transcription factors are involved in the basal expression of the Hmgi-c proximal promoter. Biochem Biophys Res Commun. 265:439–447. 1999. View Article : Google Scholar : PubMed/NCBI

13 

Ayoubi TA, Jansen E, Meulemans SM and Van de Ven WJ: Regulation of HMGIC expression: An architectural transcription factor involved in growth control and development. Oncogene. 18:5076–5087. 1999. View Article : Google Scholar : PubMed/NCBI

14 

Thuault S, Valcourt U, Petersen M, Manfioletti G, Heldin CH and Moustakas A: Transforming growth factor-beta employs HMGA2 to elicit epithelial-mesenchymal transition. J Cell Biol. 174:175–183. 2006. View Article : Google Scholar : PubMed/NCBI

15 

Wend P, Runke S, Wend K, Anchondo B, Yesayan M, Jardon M, Hardie N, Loddenkemper C, Ulasov I, Lesniak MS, et al: WNT10B/β-catenin signalling induces HMGA2 and proliferation in metastatic triple-negative breast cancer. EMBO Mol Med. 5:264–279. 2013. View Article : Google Scholar : PubMed/NCBI

16 

Lam K, Muselman A, Du R, Harada Y, Scholl AG, Yan M, Matsuura S, Weng S, Harada H and Zhang DE: Hmga2 is a direct target gene of RUNX1 and regulates expansion of myeloid progenitors in mice. Blood. 124:2203–2212. 2014. View Article : Google Scholar : PubMed/NCBI

17 

Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, Sweet-Cordero A, Ebert BL, Mak RH, Ferrando AA, et al: MicroRNA expression profiles classify human cancers. Nature. 435:834–838. 2005. View Article : Google Scholar : PubMed/NCBI

18 

Shell S, Park SM, Radjabi AR, Schickel R, Kistner EO, Jewell DA, Feig C, Lengyel E and Peter ME: Let-7 expression defines two differentiation stages of cancer. Proc Natl Acad Sci USA. 104:11400–11405. 2007. View Article : Google Scholar : PubMed/NCBI

19 

Lee WY, Tzeng CC and Chou CY: Uterine leiomyosarcomas coexistent with cellular and atypical leiomyomata in a young woman during the treatment with luteinizing hormone-releasing hormone agonist. Gynecol Oncol. 52:74–79. 1994. View Article : Google Scholar : PubMed/NCBI

20 

Guo L, Chen C, Shi M, Wang F, Chen X, Diao D, Hu M, Yu M, Qian L and Guo N: Stat3-coordinated Lin-28-let-7-HMGA2 and miR-200-ZEB1 circuits initiate and maintain oncostatin M-driven epithelial-mesenchymal transition. Oncogene. 32:5272–5282. 2013. View Article : Google Scholar : PubMed/NCBI

21 

Newman MA, Thomson JM and Hammond SM: Lin-28 interaction with the Let-7 precursor loop mediates regulated microRNA processing. RNA. 14:1539–1549. 2008. View Article : Google Scholar : PubMed/NCBI

22 

Dröge P and Davey CA: Do cells let-7 determine stemness? Cell Stem Cell. 2:8–9. 2008. View Article : Google Scholar : PubMed/NCBI

23 

Copley MR, Babovic S, Benz C, Knapp DJ, Beer PA, Kent DG, Wohrer S, Treloar DQ, Day C, Rowe K, et al: The Lin28b-let-7-Hmga2 axis determines the higher self-renewal potential of fetal haematopoietic stem cells. Nat Cell Biol. 15:916–925. 2013. View Article : Google Scholar : PubMed/NCBI

24 

Dangi-Garimella S, Yun J, Eves EM, Newman M, Erkeland SJ, Hammond SM, Minn AJ and Rosner MR: Raf kinase inhibitory protein suppresses a metastasis signalling cascade involving LIN28 and let-7. EMBO J. 28:347–358. 2009. View Article : Google Scholar : PubMed/NCBI

25 

Sun M, Gomes S, Chen P, Frankenberger CA, Sankarasharma D, Chung CH, Chada KK and Rosner MR: RKIP and HMGA2 regulate breast tumor survival and metastasis through lysyl oxidase and syndecan-2. Oncogene. 33:3528–3537. 2014. View Article : Google Scholar :

26 

Lin Y, Liu AY, Fan C, Zheng H, Li Y, Zhang C, Wu S, Yu D, Huang Z, Liu F, et al: MicroRNA-33b inhibits breast cancer metastasis by targeting HMGA2, SALL4 and Twist1. Sci Rep. 5:99952015. View Article : Google Scholar : PubMed/NCBI

27 

Kim TH, Song JY, Park H, Jeong JY, Kwon AY, Heo JH, Kang H, Kim G and An HJ: miR-145, targeting high-mobility group A2, is a powerful predictor of patient outcome in ovarian carcinoma. Cancer Lett. 356B:937–945. 2015. View Article : Google Scholar

28 

Emmrich S, Katsman-Kuipers JE, Henke K, Khatib ME, Jammal R, Engeland F, Dasci F, Zwaan CM, den Boer ML, Verboon L, et al: miR-9 is a tumor suppressor in pediatric AML with t(8;21). Leukemia. 28:1022–1032. 2014. View Article : Google Scholar

29 

Liu S, Patel SH, Ginestier C, Ibarra I, Martin-Trevino R, Bai S, McDermott SP, Shang L, Ke J, Ou SJ, et al: MicroRNA93 regulates proliferation and differentiation of normal and malignant breast stem cells. PLoS Genet. 8:e10027512012. View Article : Google Scholar : PubMed/NCBI

30 

Ye ZH and Gui DW: miR-539 suppresses proliferation and induces apoptosis in renal cell carcinoma by targeting high mobility group A2. Mol Med Rep. 17:5611–5618. 2018.PubMed/NCBI

31 

Li T, Yang XD, Ye CX, Shen ZL, Yang Y, Wang B, Guo P, Gao ZD, Ye YJ, Jiang KW, et al: Long noncoding RNA HIT000218960 promotes papillary thyroid cancer oncogenesis and tumor progression by upregulating the expression of high mobility group AT-hook 2 (HMGA2) gene. Cell Cycle. 16:224–231. 2017. View Article : Google Scholar :

32 

Boque-Sastre R, Soler M, Oliveira-Mateos C, Portela A, Moutinho C, Sayols S, Villanueva A, Esteller M and Guil S: Head-to-head antisense transcription and R-loop formation promotes transcriptional activation. Proc Natl Acad Sci USA. 112:5785–5790. 2015. View Article : Google Scholar : PubMed/NCBI

33 

Zhou X, Benson KF, Ashar HR and Chada K: Mutation responsible for the mouse pygmy phenotype in the developmentally regulated factor HMGI-C. Nature. 376:771–774. 1995. View Article : Google Scholar : PubMed/NCBI

34 

Weedon MN, Lettre G, Freathy RM, Lindgren CM, Voight BF, Perry JR, Elliott KS, Hackett R, Guiducci C, Shields B, et al Diabetes Genetics Initiative; Wellcome Trust Case Control Consortium: A common variant of HMGA2 is associated with adult and childhood height in the general population. Nat Genet. 39:1245–1250. 2007. View Article : Google Scholar : PubMed/NCBI

35 

Abi Habib W, Brioude F, Edouard T, Bennett JT, Lienhardt-Roussie A, Tixier F, Salem J, Yuen T, Azzi S, Le Bouc Y, et al: Genetic disruption of the oncogenic HMGA2-PLAG1-IGF2 pathway causes fetal growth restriction. Genet Med. 20:250–258. 2018. View Article : Google Scholar

36 

Zaidi MR, Okada Y and Chada KK: Misexpression of full-length HMGA2 induces benign mesenchymal tumors in mice. Cancer Res. 66:7453–7459. 2006. View Article : Google Scholar : PubMed/NCBI

37 

Efanov A, Zanesi N, Coppola V, Nuovo G, Bolon B, Wernicle-Jameson D, Lagana A, Hansjuerg A, Pichiorri F and Croce CM: Human HMGA2 protein overexpressed in mice induces precursor T-cell lymphoblastic leukemia. Blood Cancer J. 4:e2272014. View Article : Google Scholar : PubMed/NCBI

38 

Schoenmakers EF, Wanschura S, Mols R, Bullerdiek J, Van den Berghe H and Van de Ven WJ: Recurrent rearrangements in the high mobility group protein gene, HMGI-C, in benign mesenchymal tumours. Nat Genet. 10:436–444. 1995. View Article : Google Scholar : PubMed/NCBI

39 

Dreux N, Marty M, Chibon F, Vélasco V, Hostein I, Ranchère-Vince D, Terrier P and Coindre JM: Value and limitation of immunohistochemical expression of HMGA2 in mesenchymal tumors: about a series of 1052 cases. Mod Pathol. 23:1657–1666. 2010. View Article : Google Scholar : PubMed/NCBI

40 

Marquis M, Beaubois C, Lavallée VP, Abrahamowicz M, Danieli C, Lemieux S, Ahmad I, Wei A, Ting SB, Fleming S, et al: High expression of HMGA2 independently predicts poor clinical outcomes in acute myeloid leukemia. Blood Cancer J. 8:682018. View Article : Google Scholar : PubMed/NCBI

41 

Wang X, Liu X, Li AY, Chen L, Lai L, Lin HH, Hu S, Yao L, Peng J, Loera S, et al: Overexpression of HMGA2 promotes metastasis and impacts survival of colorectal cancers. Clin Cancer Res. 17:2570–2580. 2011. View Article : Google Scholar : PubMed/NCBI

42 

Malek A, Bakhidze E, Noske A, Sers C, Aigner A, Schäfer R and Tchernitsa O: HMGA2 gene is a promising target for ovarian cancer silencing therapy. Int J Cancer. 123:348–356. 2008. View Article : Google Scholar : PubMed/NCBI

43 

Tan L, Wei X, Zheng L, Zeng J, Liu H, Yang S and Tan H: Amplified HMGA2 promotes cell growth by regulating Akt pathway in AML. J Cancer Res Clin Oncol. 142:389–399. 2016. View Article : Google Scholar

44 

Tessari MA, Gostissa M, Altamura S, Sgarra R, Rustighi A, Salvagno C, Caretti G, Imbriano C, Mantovani R, Del Sal G, et al: Transcriptional activation of the cyclin A gene by the architectural transcription factor HMGA2. Mol Cell Biol. 23:9104–9116. 2003. View Article : Google Scholar : PubMed/NCBI

45 

Li Y, Peng L and Seto E: Histone deacetylase 10 regulates the cell cycle G2/M phase transition via a novel Let-7-HMGA2-cyclin A2 pathway. Mol Cell Biol. 35:3547–3565. 2015. View Article : Google Scholar : PubMed/NCBI

46 

Shaulian E and Karin M: AP-1 as a regulator of cell life and death. Nat Cell Biol. 4:E131–E136. 2002. View Article : Google Scholar : PubMed/NCBI

47 

Vallone D, Battista S, Pierantoni GM, Fedele M, Casalino L, Santoro M, Viglietto G, Fusco A and Verde P: Neoplastic transformation of rat thyroid cells requires the junB and fra-1 gene induction which is dependent on the HMGI-C gene product. EMBO J. 16:5310–5321. 1997. View Article : Google Scholar : PubMed/NCBI

48 

Evan GI, Brown L, Whyte M and Harrington E: Apoptosis and the cell cycle. Curr Opin Cell Biol. 7:825–834. 1995. View Article : Google Scholar : PubMed/NCBI

49 

Seville LL, Shah N, Westwell AD and Chan WC: Modulation of pRB/E2F functions in the regulation of cell cycle and in cancer. Curr Cancer Drug Targets. 5:159–170. 2005. View Article : Google Scholar : PubMed/NCBI

50 

Fedele M, Visone R, De Martino I, Troncone G, Palmieri D, Battista S, Ciarmiello A, Pallante P, Arra C, Melillo RM, et al: HMGA2 induces pituitary tumorigenesis by enhancing E2F1 activity. Cancer Cell. 9:459–471. 2006. View Article : Google Scholar : PubMed/NCBI

51 

Yu KR, Park SB, Jung JW, Seo MS, Hong IS, Kim HS, Seo Y, Kang TW, Lee JY, Kurtz A, et al: HMGA2 regulates the in vitro aging and proliferation of human umbilical cord blood-derived stromal cells through the mTOR/p70S6K signaling pathway. Stem Cell Res (Amst). 10:156–165. 2013. View Article : Google Scholar

52 

Zhang H, Tang Z, Deng C, He Y, Wu F, Liu O and Hu C: HMGA2 is associated with the aggressiveness of tongue squamous cell carcinoma. Oral Dis. 23:255–264. 2017. View Article : Google Scholar

53 

Xie H, Wang J, Jiang L, Geng C, Li Q, Mei D, Zhao L and Cao J: ROS-dependent HMGA2 upregulation mediates Cd-induced proliferation in MRC-5 cells. Toxicol In Vitro. 34:146–152. 2016. View Article : Google Scholar : PubMed/NCBI

54 

Minshull J, Blow JJ and Hunt T: Translation of cyclin mRNA is necessary for extracts of activated Xenopus eggs to enter mitosis. Cell. 56:947–956. 1989. View Article : Google Scholar : PubMed/NCBI

55 

Liu WD, Tan L, Xiong XF, Liang YP and Tan H: The effects of lentivirus-mediated RNA interference silencing HMGA2 on proliferation and expressions of cyclin B2 and cyclin A2 in HL-60 cells. Zhonghua Xue Ye Xue Za Zhi. 33:448–452. 2012.in Chinese. PubMed/NCBI

56 

Branzei D and Foiani M: Maintaining genome stability at the replication fork. Nat Rev Mol Cell Biol. 11:208–219. 2010. View Article : Google Scholar : PubMed/NCBI

57 

Masai H, Tanaka T and Kohda D: Stalled replication forks: Making ends meet for recognition and stabilization. BioEssays. 32:687–697. 2010. View Article : Google Scholar : PubMed/NCBI

58 

Courcelle J, Donaldson JR, Chow KH and Courcelle CT: DNA damage-induced replication fork regression and processing in Escherichia coli. Science. 299:1064–1067. 2003. View Article : Google Scholar : PubMed/NCBI

59 

Yu H, Lim HH, Tjokro NO, Sathiyanathan P, Natarajan S, Chew TW, Klonisch T, Goodman SD, Surana U and Dröge P: Chaperoning HMGA2 protein protects stalled replication forks in stem and cancer cells. Cell Rep. 6:684–697. 2014. View Article : Google Scholar : PubMed/NCBI

60 

Iyama T and Wilson DM III: DNA repair mechanisms in dividing and non-dividing cells. DNA Repair (Amst). 12:620–636. 2013. View Article : Google Scholar

61 

Bartkova J, Rajpert-De Meyts E, Skakkebaek NE, Lukas J and Bartek J: DNA damage response in human testes and testicular germ cell tumours: Biology and implications for therapy. Int J Androl. 30:282–291; discussion 291. 2007. View Article : Google Scholar : PubMed/NCBI

62 

Shrivastav M, De Haro LP and Nickoloff JA: Regulation of DNA double-strand break repair pathway choice. Cell Res. 18:134–147. 2008. View Article : Google Scholar

63 

Lieber MR: The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu Rev Biochem. 79:181–211. 2010. View Article : Google Scholar : PubMed/NCBI

64 

Arnoult N, Correia A, Ma J, Merlo A, Garcia-Gomez S, Maric M, Tognetti M, Benner CW, Boulton SJ, Saghatelian A, et al: Regulation of DNA repair pathway choice in S and G2 phases by the NHEJ inhibitor CYREN. Nature. 549:548–552. 2017. View Article : Google Scholar : PubMed/NCBI

65 

Meek K, Dang V and Lees-Miller SP: DNA-PK: The means to justify the ends? Adv Immunol. 99:33–58. 2008. View Article : Google Scholar

66 

Uematsu N, Weterings E, Yano K, Morotomi-Yano K, Jakob B, Taucher-Scholz G, Mari PO, van Gent DC, Chen BP and Chen DJ: Autophosphorylation of DNA-PKCS regulates its dynamics at DNA double-strand breaks. J Cell Biol. 177:219–229. 2007. View Article : Google Scholar : PubMed/NCBI

67 

Downs JA, Lowndes NF and Jackson SP: A role for Saccharomyces cerevisiae histone H2A in DNA repair. Nature. 408:1001–1004. 2000. View Article : Google Scholar

68 

Nick McElhinny SA, Snowden CM, McCarville J and Ramsden DA: Ku recruits the XRCC4-ligase IV complex to DNA ends. Mol Cell Biol. 20:2996–3003. 2000. View Article : Google Scholar : PubMed/NCBI

69 

Li AY, Boo LM, Wang SY, Lin HH, Wang CC, Yen Y, Chen BP, Chen DJ and Ann DK: Suppression of nonhomologous end joining repair by overexpression of HMGA2. Cancer Res. 69:5699–5706. 2009. View Article : Google Scholar : PubMed/NCBI

70 

Kühne C, Tjörnhammar ML, Pongor S, Banks L and Simoncsits A: Repair of a minimal DNA double-strand break by NHEJ requires DNA-PKcs and is controlled by the ATM/ATR checkpoint. Nucleic Acids Res. 31:7227–7237. 2003. View Article : Google Scholar : PubMed/NCBI

71 

Bullerdiek J and Rommel B: Comment re: HMGA2 is a negative regulator of DNA-PK pathway. Cancer Res. 70:1742author reply 1742. 2010. View Article : Google Scholar : PubMed/NCBI

72 

Cleynen I and Van de Ven WJ: The HMGA proteins: A myriad of functions (Review). Int J Oncol. 32:289–305. 2008.PubMed/NCBI

73 

Boo LM, Lin HH, Chung V, Zhou B, Louie SG, O'Reilly MA, Yen Y and Ann DK: High mobility group A2 potentiates genotoxic stress in part through the modulation of basal and DNA damage-dependent phosphatidylinositol 3-kinase-related protein kinase activation. Cancer Res. 65:6622–6630. 2005. View Article : Google Scholar : PubMed/NCBI

74 

Palmieri D, Valentino T, D'Angelo D, De Martino I, Postiglione I, Pacelli R, Croce CM, Fedele M and Fusco A: HMGA proteins promote ATM expression and enhance cancer cell resistance to genotoxic agents. Oncogene. 30:3024–3035. 2011. View Article : Google Scholar : PubMed/NCBI

75 

Natarajan S, Hombach-Klonisch S, Dröge P and Klonisch T: HMGA2 inhibits apoptosis through interaction with ATR-CHK1 signaling complex in human cancer cells. Neoplasia. 15:263–280. 2013. View Article : Google Scholar : PubMed/NCBI

76 

Jackson SP and Bartek J: The DNA-damage response in human biology and disease. Nature. 461:1071–1078. 2009. View Article : Google Scholar : PubMed/NCBI

77 

Summer H, Li O, Bao Q, Zhan L, Peter S, Sathiyanathan P, Henderson D, Klonisch T, Goodman SD and Dröge P: HMGA2 exhibits dRP/AP site cleavage activity and protects cancer cells from DNA-damage-induced cytotoxicity during chemotherapy. Nucleic Acids Res. 37:4371–4384. 2009. View Article : Google Scholar : PubMed/NCBI

78 

Hombach-Klonisch S, Kalantari F, Medapati MR, Natarajan S, Krishnan SN, Kumar-Kanojia A, Thanasupawat T, Begum F, Xu FY, Hatch GM, et al: HMGA2 as a functional antagonist of PARP1 inhibitors in tumor cells. Mol Oncol. 13:153–170. 2019. View Article : Google Scholar :

79 

Alekseev S and Coin F: Orchestral maneuvers at the damaged sites in nucleotide excision repair. Cell Mol Life Sci. 72:2177–2186. 2015. View Article : Google Scholar : PubMed/NCBI

80 

de Laat WL, Jaspers NG and Hoeijmakers JH: Molecular mechanism of nucleotide excision repair. Genes Dev. 13:768–785. 1999. View Article : Google Scholar : PubMed/NCBI

81 

Westerveld A, Hoeijmakers JH, van Duin M, de Wit J, Odijk H, Pastink A, Wood RD and Bootsma D: Molecular cloning of a human DNA repair gene. Nature. 310:425–429. 1984. View Article : Google Scholar : PubMed/NCBI

82 

Borrmann L, Schwanbeck R, Heyduk T, Seebeck B, Rogalla P, Bullerdiek J and Wisniewski JR: High mobility group A2 protein and its derivatives bind a specific region of the promoter of DNA repair gene ERCC1 and modulate its activity. Nucleic Acids Res. 31:6841–6851. 2003. View Article : Google Scholar : PubMed/NCBI

83 

Cotter TG: Apoptosis and cancer: The genesis of a research field. Nat Rev Cancer. 9:501–507. 2009. View Article : Google Scholar : PubMed/NCBI

84 

Taylor RC, Cullen SP and Martin SJ: Apoptosis: Controlled demolition at the cellular level. Nat Rev Mol Cell Biol. 9:231–241. 2008. View Article : Google Scholar

85 

Ma C, Nong K, Zhu H, Wang W, Huang X, Yuan Z and Ai K: H19 promotes pancreatic cancer metastasis by derepressing let-7's suppression on its target HMGA2-mediated EMT. Tumour Biol. 35:9163–9169. 2014. View Article : Google Scholar : PubMed/NCBI

86 

Jia J, Yang M, Chen Y, Yuan H, Li J, Cui X and Liu Z: Inducing apoptosis effect of caffeic acid 3,4-dihydroxy-phenethyl ester on the breast cancer cells. Tumour Biol. 35:11781–11789. 2014. View Article : Google Scholar : PubMed/NCBI

87 

Sionov RV and Haupt Y: The cellular response to p53: The decision between life and death. Oncogene. 18:6145–6157. 1999. View Article : Google Scholar : PubMed/NCBI

88 

Meier P and Vousden KH: Lucifer's labyrinth - ten years of path finding in cell death. Mol Cell. 28:746–754. 2007. View Article : Google Scholar : PubMed/NCBI

89 

Pentimalli F, Dentice M, Fedele M, Pierantoni GM, Cito L, Pallante P, Santoro M, Viglietto G, Dal Cin P and Fusco A: Suppression of HMGA2 protein synthesis could be a tool for the therapy of well differentiated liposarcomas overexpressing HMGA2. Cancer Res. 63:7423–7427. 2003.PubMed/NCBI

90 

Kaur H, Hütt-Cabezas M, Weingart MF, Xu J, Kuwahara Y, Erdreich-Epstein A, Weissman BE, Eberhart CG and Raabe EH: The chromatin-modifying protein HMGA2 promotes atypical teratoid/rhabdoid cell tumorigenicity. J Neuropathol Exp Neurol. 74:177–185. 2015. View Article : Google Scholar : PubMed/NCBI

91 

Mansoori B, Mohammadi A, Shirjang S and Baradaran B: HMGI-C suppressing induces P53/caspase-9 axis to regulate apoptosis in breast adenocarcinoma cells. Cell Cycle. 15:2585–2592. 2016. View Article : Google Scholar : PubMed/NCBI

92 

Gao X, Dai M, Li Q, Wang Z, Lu Y and Song Z: HMGA2 regulates lung cancer proliferation and metastasis. Thorac Cancer. 8:Jul 28–2017.Epub ahead of print. View Article : Google Scholar

93 

Basolo F, Fiore L, Fusco A, Giannini R, Albini A, Merlo GR, Fontanini G, Conaldi PG and Toniolo A: Potentiation of the malignant phenotype of the undifferentiated ARO thyroid cell line by insertion of the bcl-2 gene. Int J Cancer. 81:956–962. 1999. View Article : Google Scholar : PubMed/NCBI

94 

Sos ML, Fischer S, Ullrich R, Peifer M, Heuckmann JM, Koker M, Heynck S, Stückrath I, Weiss J, Fischer F, et al: Identifying genotype-dependent efficacy of single and combined PI3K- and MAPK-pathway inhibition in cancer. Proc Natl Acad Sci USA. 106:18351–18356. 2009. View Article : Google Scholar : PubMed/NCBI

95 

Cardone MH, Roy N, Stennicke HR, Salvesen GS, Franke TF, Stanbridge E, Frisch S and Reed JC: Regulation of cell death protease caspase-9 by phosphorylation. Science. 282:1318–1321. 1998. View Article : Google Scholar : PubMed/NCBI

96 

Wang XT, Pei DS, Xu J, Guan QH, Sun YF, Liu XM and Zhang GY: Opposing effects of Bad phosphorylation at two distinct sites by Akt1 and JNK1/2 on ischemic brain injury. Cell Signal. 19:1844–1856. 2007. View Article : Google Scholar : PubMed/NCBI

97 

Wei CH, Wei LX, Lai MY, Chen JZ and Mo XJ: Effect of silencing of high mobility group A2 gene on gastric cancer MKN-45 cells. World J Gastroenterol. 19:1239–1246. 2013. View Article : Google Scholar : PubMed/NCBI

98 

Danial NN and Korsmeyer SJ: Cell death: Critical control points. Cell. 116:205–219. 2004. View Article : Google Scholar : PubMed/NCBI

99 

Shi X, Tian B, Ma W, Zhang N, Qiao Y, Li X, Zhang Y, Huang B and Lu J: A novel anti-proliferative role of HMGA2 in induction of apoptosis through caspase 2 in primary human fibroblast cells. Biosci Rep. 35:e001692015. View Article : Google Scholar

100 

Fujikane R, Komori K, Sekiguchi M and Hidaka M: Function of high-mobility group A proteins in the DNA damage signaling for the induction of apoptosis. Sci Rep. 6:317142016. View Article : Google Scholar : PubMed/NCBI

101 

Wang WY, Cao YX, Zhou X, Wei B, Zhan L and Fu LT: HMGA2 gene silencing reduces epithelial-mesenchymal transition and lymph node metastasis in cervical cancer through inhibiting the ATR/Chk1 signaling pathway. Am J Transl Res. 10:3036–3052. 2018.PubMed/NCBI

102 

Haselmann V, Kurz A, Bertsch U, Hübner S, Olempska-Müller M, Fritsch J, Häsler R, Pickl A, Fritsche H, Annewanter F, et al: Nuclear death receptor TRAIL-R2 inhibits maturation of let-7 and promotes proliferation of pancreatic and other tumor cells. Gastroenterology. 146:278–290. 2014. View Article : Google Scholar

103 

Hayflick L: The limited in vitro lifetime of human diploid cell strains. Exp Cell Res. 37:614–636. 1965. View Article : Google Scholar : PubMed/NCBI

104 

d'Adda di Fagagna F: Living on a break: Cellular senescence as a DNA-damage response. Nat Rev Cancer. 8:512–522. 2008. View Article : Google Scholar : PubMed/NCBI

105 

Matsumura T, Zerrudo Z and Hayflick L: Senescent human diploid cells in culture: Survival, DNA synthesis and morphology. J Gerontol. 34:328–334. 1979. View Article : Google Scholar : PubMed/NCBI

106 

Muñoz-Espín D, Cañamero M, Maraver A, Gómez-López G, Contreras J, Murillo-Cuesta S, Rodríguez-Baeza A, Varela-Nieto I, Ruberte J, Collado M, et al: Programmed cell senescence during mammalian embryonic development. Cell. 155:1104–1118. 2013. View Article : Google Scholar : PubMed/NCBI

107 

Storer M, Mas A, Robert-Moreno A, Pecoraro M, Ortells MC, Di Giacomo V, Yosef R, Pilpel N, Krizhanovsky V, Sharpe J, et al: Senescence is a developmental mechanism that contributes to embryonic growth and patterning. Cell. 155:1119–1130. 2013. View Article : Google Scholar : PubMed/NCBI

108 

Artandi SE and DePinho RA: A critical role for telomeres in suppressing and facilitating carcinogenesis. Curr Opin Genet Dev. 10:39–46. 2000. View Article : Google Scholar : PubMed/NCBI

109 

Michaloglou C, Vredeveld LC, Soengas MS, Denoyelle C, Kuilman T, van der Horst CM, Majoor DM, Shay JW, Mooi WJ and Peeper DS: BRAFE600-associated senescence-like cell cycle arrest of human naevi. Nature. 436:720–724. 2005. View Article : Google Scholar : PubMed/NCBI

110 

Chen Z, Trotman LC, Shaffer D, Lin HK, Dotan ZA, Niki M, Koutcher JA, Scher HI, Ludwig T, Gerald W, et al: Crucial role of p53-dependent cellular senescence in suppression of Pten-deficient tumorigenesis. Nature. 436:725–730. 2005. View Article : Google Scholar : PubMed/NCBI

111 

Bringold F and Serrano M: Tumor suppressors and oncogenes in cellular senescence. Exp Gerontol. 35:317–329. 2000. View Article : Google Scholar : PubMed/NCBI

112 

Dimri GP, Itahana K, Acosta M and Campisi J: Regulation of a senescence checkpoint response by the E2F1 transcription factor and p14(ARF) tumor suppressor. Mol Cell Biol. 20:273–285. 2000. View Article : Google Scholar

113 

Sharpless NE: INK4a/ARF: A multifunctional tumor suppressor locus. Mutat Res. 576:22–38. 2005. View Article : Google Scholar : PubMed/NCBI

114 

Kim WY and Sharpless NE: The regulation of INK4/ARF in cancer and aging. Cell. 127:265–275. 2006. View Article : Google Scholar : PubMed/NCBI

115 

Krishnamurthy J, Torrice C, Ramsey MR, Kovalev GI, Al-Regaiey K, Su L and Sharpless NE: Ink4a/Arf expression is a biomarker of aging. J Clin Invest. 114:1299–1307. 2004. View Article : Google Scholar : PubMed/NCBI

116 

Collado M and Serrano M: The power and the promise of oncogene-induced senescence markers. Nat Rev Cancer. 6:472–476. 2006. View Article : Google Scholar : PubMed/NCBI

117 

Markowski DN, Bartnitzke S, Belge G, Drieschner N, Helmke BM and Bullerdiek J: Cell culture and senescence in uterine fibroids. Cancer Genet Cytogenet. 202:53–57. 2010. View Article : Google Scholar : PubMed/NCBI

118 

Nishino J, Kim I, Chada K and Morrison SJ: Hmga2 promotes neural stem cell self-renewal in young but not old mice by reducing p16Ink4a and p19Arf expression. Cell. 135:227–239. 2008. View Article : Google Scholar : PubMed/NCBI

119 

Markowski DN, Winter N, Meyer F, von Ahsen I, Wenk H, Nolte I and Bullerdiek J: p14Arf acts as an antagonist of HMGA2 in senescence of mesenchymal stem cells-implications for benign tumorigenesis. Genes Chromosomes Cancer. 50:489–498. 2011. View Article : Google Scholar : PubMed/NCBI

120 

Zhu S, Deng S, Ma Q, Zhang T, Jia C, Zhuo D, Yang F, Wei J, Wang L, Dykxhoorn DM, et al: MicroRNA-10A* and microRNA-21 modulate endothelial progenitor cell senescence via suppressing high-mobility group A2. Circ Res. 112:152–164. 2013. View Article : Google Scholar

121 

Federico A, Forzati F, Esposito F, Arra C, Palma G, Barbieri A, Palmieri D, Fedele M, Pierantoni GM, De Martino I, et al: Hmga1/Hmga2 double knock-out mice display a 'superpygmy' phenotype. Biol Open. 3:372–378. 2014. View Article : Google Scholar : PubMed/NCBI

122 

Shi X, Tian B, Liu L, Gao Y, Ma C, Mwichie N, Ma W, Han L, Huang B, Lu J, et al: Rb protein is essential to the senescence-associated heterochromatic foci formation induced by HMGA2 in primary WI38 cells. J Genet Genomics. 40:391–398. 2013. View Article : Google Scholar : PubMed/NCBI

123 

Narita M, Narita M, Krizhanovsky V, Nuñez S, Chicas A, Hearn SA, Myers MP and Lowe SW: A novel role for high-mobility group a proteins in cellular senescence and heterochromatin formation. Cell. 126:503–514. 2006. View Article : Google Scholar : PubMed/NCBI

124 

Yentrapalli R, Azimzadeh O, Sriharshan A, Malinowsky K, Merl J, Wojcik A, Harms-Ringdahl M, Atkinson MJ, Becker KF, Haghdoost S, et al: The PI3K/Akt/mTOR pathway is implicated in the premature senescence of primary human endothelial cells exposed to chronic radiation. PLoS One. 8:e700242013. View Article : Google Scholar : PubMed/NCBI

125 

Kennedy AL, Morton JP, Manoharan I, Nelson DM, Jamieson NB, Pawlikowski JS, McBryan T, Doyle B, McKay C, Oien KA, et al: Activation of the PIK3CA/AKT pathway suppresses senescence induced by an activated RAS oncogene to promote tumorigenesis. Mol Cell. 42:36–49. 2011. View Article : Google Scholar : PubMed/NCBI

126 

Courtois-Cox S, Genther Williams SM, Reczek EE, Johnson BW, McGillicuddy LT, Johannessen CM, Hollstein PE, MacCollin M and Cichowski K: A negative feedback signaling network underlies oncogene-induced senescence. Cancer Cell. 10:459–472. 2006. View Article : Google Scholar : PubMed/NCBI

127 

Xu X, Lu Z, Qiang W, Vidimar V, Kong B, Kim JJ and Wei JJ: Inactivation of AKT induces cellular senescence in uterine leiomyoma. Endocrinology. 155:1510–1519. 2014. View Article : Google Scholar : PubMed/NCBI

128 

Kalluri R and Weinberg RA: The basics of epithelial-mesen-chymal transition. J Clin Invest. 119:1420–1428. 2009. View Article : Google Scholar : PubMed/NCBI

129 

Barrallo-Gimeno A and Nieto MA: The Snail genes as inducers of cell movement and survival: Implications in development and cancer. Development. 132:3151–3161. 2005. View Article : Google Scholar : PubMed/NCBI

130 

Lamouille S, Xu J and Derynck R: Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol. 15:178–196. 2014. View Article : Google Scholar : PubMed/NCBI

131 

Thiery JP, Acloque H, Huang RY and Nieto MA: Epithelial- mesenchymal transitions in development and disease. Cell. 139:871–890. 2009. View Article : Google Scholar : PubMed/NCBI

132 

Kirschmann DA, Seftor EA, Nieva DR, Mariano EA and Hendrix MJ: Differentially expressed genes associated with the metastatic phenotype in breast cancer. Breast Cancer Res Treat. 55:127–136. 1999. View Article : Google Scholar : PubMed/NCBI

133 

Wu J, Zhang S, Shan J, Hu Z, Liu X, Chen L, Ren X, Yao L, Sheng H, Li L, et al: Elevated HMGA2 expression is associated with cancer aggressiveness and predicts poor outcome in breast cancer. Cancer Lett. 376:284–292. 2016. View Article : Google Scholar : PubMed/NCBI

134 

Liu Q, Liu T, Zheng S, Gao X, Lu M, Sheyhidin I and Lu X: HMGA2 is down-regulated by microRNA let-7 and associated with epithelial-mesenchymal transition in oesophageal squamous cell carcinomas of Kazakhs. Histopathology. 65:408–417. 2014. View Article : Google Scholar : PubMed/NCBI

135 

Watanabe S, Ueda Y, Akaboshi S, Hino Y, Sekita Y and Nakao M: HMGA2 maintains oncogenic RAS-induced epithelial-mesenchymal transition in human pancreatic cancer cells. Am J Pathol. 174:854–868. 2009. View Article : Google Scholar : PubMed/NCBI

136 

Thuault S, Tan EJ, Peinado H, Cano A, Heldin CH and Moustakas A: HMGA2 and Smads co-regulate SNAIL1 expression during induction of epithelial-to-mesenchymal transition. J Biol Chem. 283:33437–33446. 2008. View Article : Google Scholar : PubMed/NCBI

137 

Morishita A, Zaidi MR, Mitoro A, Sankarasharma D, Szabolcs M, Okada Y, D'Armiento J and Chada K: HMGA2 is a driver of tumor metastasis. Cancer Res. 73:4289–4299. 2013. View Article : Google Scholar : PubMed/NCBI

138 

Liu H, Wang X, Liu S and Li H, Yuan X, Feng B, Bai H, Zhao B, Chu Y and Li H: Effects and mechanism of miR-23b on glucose-mediated epithelial-to-mesenchymal transition in diabetic nephropathy. Int J Biochem Cell Biol. 70:149–160. 2016. View Article : Google Scholar

139 

Zha L, Zhang J, Tang W, Zhang N, He M, Guo Y and Wang Z: HMGA2 elicits EMT by activating the Wnt/β-catenin pathway in gastric cancer. Dig Dis Sci. 58:724–733. 2013. View Article : Google Scholar

140 

Sakai D, Suzuki T, Osumi N and Wakamatsu Y: Cooperative action of Sox9, Snail2 and PKA signaling in early neural crest development. Development. 133:1323–1333. 2006. View Article : Google Scholar : PubMed/NCBI

141 

Tan EJ, Kahata K, Idås O, Thuault S, Heldin CH and Moustakas A: The high mobility group A2 protein epigenetically silences the Cdh1 gene during epithelial-to-mesenchymal transition. Nucleic Acids Res. 43:162–178. 2015. View Article : Google Scholar :

142 

Huber MA, Kraut N and Beug H: Molecular requirements for epithelial-mesenchymal transition during tumor progression. Curr Opin Cell Biol. 17:548–558. 2005. View Article : Google Scholar : PubMed/NCBI

143 

Singh I, Mehta A, Contreras A, Boettger T, Carraro G, Wheeler M, Cabrera-Fuentes HA, Bellusci S, Seeger W, Braun T, et al: Hmga2 is required for canonical WNT signaling during lung development. BMC Biol. 12:212014. View Article : Google Scholar : PubMed/NCBI

144 

Queimado L, Lopes CS and Reis AM: WIF1, an inhibitor of the Wnt pathway, is rearranged in salivary gland tumors. Genes Chromosomes Cancer. 46:215–225. 2007. View Article : Google Scholar

145 

Dong J, Wang R, Ren G, Li X, Wang J, Sun Y, Liang J, Nie Y, Wu K, Feng B, et al: HMGA2-FOXL2 Axis regulates metastases and epithelial-to-mesenchymal transition of chemoresistant gastric cancer. Clin Cancer Res. 23:3461–3473. 2017. View Article : Google Scholar : PubMed/NCBI

146 

Bodnar AG: Marine invertebrates as models for aging research. Exp Gerontol. 44:477–484. 2009. View Article : Google Scholar : PubMed/NCBI

147 

d'Adda di Fagagna F, Reaper PM, Clay-Farrace L, Fiegler H, Carr P, Von Zglinicki T, Saretzki G, Carter NP and Jackson SP: A DNA damage checkpoint response in telomere-initiated senescence. Nature. 426:194–198. 2003. View Article : Google Scholar : PubMed/NCBI

148 

Harley CB: Telomerase and cancer therapeutics. Nat Rev Cancer. 8:167–179. 2008. View Article : Google Scholar : PubMed/NCBI

149 

Li AY, Lin HH, Kuo CY, Shih HM, Wang CC, Yen Y and Ann DK: High-mobility group A2 protein modulates hTERT transcription to promote tumorigenesis. Mol Cell Biol. 31:2605–2617. 2011. View Article : Google Scholar : PubMed/NCBI

150 

Natarajan S, Begum F, Gim J, Wark L, Henderson D, Davie JR, Hombach-Klonisch S and Klonisch T: High mobility group A2 protects cancer cells against telomere dysfunction. Oncotarget. 7:12761–12782. 2016. View Article : Google Scholar : PubMed/NCBI

151 

Qian YW, Gao JH, Lu F and Zheng XD: The differences between adipose tissue derived stem cells and lipoma mesen-chymal stem cells in characteristics. Zhonghua Zheng Xing Wai Ke Za Zhi. 26:125–132. 2010.In Chinese. PubMed/NCBI

152 

Okamoto K, Bartocci C, Ouzounov I, Diedrich JK, Yates JR III and Denchi EL: A two-step mechanism for TRF2-mediated chromosome-end protection. Nature. 494:502–505. 2013. View Article : Google Scholar : PubMed/NCBI

153 

Fojo T: Cancer, DNA repair mechanisms, and resistance to chemotherapy. J Natl Cancer Inst. 93:1434–1436. 2001. View Article : Google Scholar : PubMed/NCBI

154 

Schmitt CA, Fridman JS, Yang M, Lee S, Baranov E, Hoffman RM and Lowe SW: A senescence program controlled by p53 and p16INK4a contributes to the outcome of cancer therapy. Cell. 109:335–346. 2002. View Article : Google Scholar : PubMed/NCBI

155 

Marijon H, Dokmak S, Paradis V, Zappa M, Bieche I, Bouattour M, Raymond E and Faivre S: Epithelial-to-mesenchymal transition and acquired resistance to sunitinib in a patient with hepato-cellular carcinoma. J Hepatol. 54:1073–1078. 2011. View Article : Google Scholar

156 

Dangi-Garimella S, Krantz SB, Barron MR, Shields MA, Heiferman MJ, Grippo PJ, Bentrem DJ and Munshi HG: Three-dimensional collagen I promotes gemcitabine resistance in pancreatic cancer through MT1-MMP-mediated expression of HMGA2. Cancer Res. 71:1019–1028. 2011. View Article : Google Scholar

157 

Dangi-Garimella S, Sahai V, Ebine K, Kumar K and Munshi HG: Three-dimensional collagen I promotes gemcitabine resistance in vitro in pancreatic cancer cells through HMGA2-dependent histone acetyltransferase expression. PLoS One. 8:e645662013. View Article : Google Scholar : PubMed/NCBI

158 

Giannini G, Di Marcotullio L, Ristori E, Zani M, Crescenzi M, Scarpa S, Piaggio G, Vacca A, Peverali FA, Diana F, et al: HMGI(Y) and HMGI-C genes are expressed in neuroblastoma cell lines and tumors and affect retinoic acid responsiveness. Cancer Res. 59:2484–2492. 1999.PubMed/NCBI

159 

Xia YY, Yin L, Tian H, Guo WJ, Jiang N, Jiang XS, Wu J, Chen M, Wu JZ and He X: HMGA2 is associated with epithelial-mesenchymal transition and can predict poor prognosis in nasopharyngeal carcinoma. OncoTargets Ther. 8:169–176. 2015. View Article : Google Scholar

160 

Davidson B, Holth A, Hellesylt E, Tan TZ, Huang RY, Tropé C, Nesland JM and Thiery JP: The clinical role of epithelial-mesen-chymal transition and stem cell markers in advanced-stage ovarian serous carcinoma effusions. Hum Pathol. 46:1–8. 2015. View Article : Google Scholar

161 

Rogalla P, Drechsler K, Kazmierczak B, Rippe V, Bonk U and Bullerdiek J: Expression of HMGI-C, a member of the high mobility group protein family, in a subset of breast cancers: Relationship to histologic grade. Mol Carcinog. 19:153–156. 1997. View Article : Google Scholar : PubMed/NCBI

162 

Lee CT, Wu TT, Lohse CM and Zhang L: High-mobility group AT-hook 2: An independent marker of poor prognosis in intrahepatic cholangiocarcinoma. Hum Pathol. 45:2334–2340. 2014. View Article : Google Scholar : PubMed/NCBI

163 

Hristov AC, Cope L, Reyes MD, Singh M, Iacobuzio-Donahue C, Maitra A and Resar LM: HMGA2 protein expression correlates with lymph node metastasis and increased tumor grade in pancreatic ductal adenocarcinoma. Mod Pathol. 22:43–49. 2009. View Article : Google Scholar :

164 

Yang GL, Zhang LH, Bo JJ, Hou KL, Cai X, Chen YY, Li H, Liu DM and Huang YR: Overexpression of HMGA2 in bladder cancer and its association with clinicopathologic features and prognosis HMGA2 as a prognostic marker of bladder cancer. Eur J Surg Oncol. 37:265–271. 2011. View Article : Google Scholar : PubMed/NCBI

165 

Zou Q, Xiong L, Yang Z, Lv F, Yang L and Miao X: Expression levels of HMGA2 and CD9 and its clinicopathological signifi-cances in the benign and malignant lesions of the gallbladder. World J Surg Oncol. 10:922012. View Article : Google Scholar

166 

Lee CT, Zhang L, Mounajjed T and Wu TT: High mobility group AT-hook 2 is overexpressed in hepatoblastoma. Hum Pathol. 44:802–810. 2013. View Article : Google Scholar

167 

Raskin L, Fullen DR, Giordano TJ, Thomas DG, Frohm ML, Cha KB, Ahn J, Mukherjee B, Johnson TM and Gruber SB: Transcriptome profiling identifies HMGA2 as a biomarker of melanoma progression and prognosis. J Invest Dermatol. 133:2585–2592. 2013. View Article : Google Scholar : PubMed/NCBI

168 

Qian ZR, Asa SL, Siomi H, Siomi MC, Yoshimoto K, Yamada S, Wang EL, Rahman MM, Inoue H, Itakura M, et al: Overexpression of HMGA2 relates to reduction of the let-7 and its relationship to clinicopathological features in pituitary adenomas. Mod Pathol. 22:431–441. 2009. View Article : Google Scholar : PubMed/NCBI

169 

Belge G, Meyer A, Klemke M, Burchardt K, Stern C, Wosniok W, Loeschke S and Bullerdiek J: Upregulation of HMGA2 in thyroid carcinomas: A novel molecular marker to distinguish between benign and malignant follicular neoplasias. Genes Chromosomes Cancer. 47:56–63. 2008. View Article : Google Scholar

170 

Zhang S, Zhang H and Yu L: HMGA2 promotes glioma invasion and poor prognosis via a long-range chromatin interaction. Cancer Med. 7:3226–3239. 2018. View Article : Google Scholar :

171 

Na N, Si T, Huang Z, Miao B, Hong L, Li H and Qiu J and Qiu J: High expression of HMGA2 predicts poor survival in patients with clear cell renal cell carcinoma. OncoTargets Ther. 9:7199–7205. 2016. View Article : Google Scholar

172 

Günther K, Foraita R, Friemel J, Günther F, Bullerdiek J, Nimzyk R, Markowski DN, Behrens T and Ahrens W: The stem cell factor HMGA2 is expressed in non-HPV-associated head and neck squamous cell carcinoma and predicts patient survival of distinct subsites. Cancer Epidemiol Biomarkers Prev. 26:197–205. 2017. View Article : Google Scholar

173 

Mito JK, Agoston AT, Dal Cin P and Srivastava A: Prevalence and significance of HMGA2 expression in oesophageal adeno-carcinoma. Histopathology. 71:909–917. 2017. View Article : Google Scholar : PubMed/NCBI

174 

Sarhadi VK, Wikman H, Salmenkivi K, Kuosma E, Sioris T, Salo J, Karjalainen A, Knuutila S and Anttila S: Increased expression of high mobility group A proteins in lung cancer. J Pathol. 209:206–212. 2006. View Article : Google Scholar : PubMed/NCBI

175 

Di Cello F, Hillion J, Hristov A, Wood LJ, Mukherjee M, Schuldenfrei A, Kowalski J, Bhattacharya R, Ashfaq R and Resar LM: HMGA2 participates in transformation in human lung cancer. Mol Cancer Res. 6:743–750. 2008. View Article : Google Scholar : PubMed/NCBI

176 

Strell C, Norberg KJ, Mezheyeuski A, Schnittert J, Kuninty PR, Moro CF, Paulsson J, Schultz NA, Calatayud D, Löhr JM, et al: Stroma-regulated HMGA2 is an independent prognostic marker in PDAC and AAC. Br J Cancer. 117:65–77. 2017. View Article : Google Scholar : PubMed/NCBI

177 

Motoyama K, Inoue H, Nakamura Y, Uetake H, Sugihara K and Mori M: Clinical significance of high mobility group A2 in human gastric cancer and its relationship to let-7 microRNA family. Clin Cancer Res. 14:2334–2340. 2008. View Article : Google Scholar : PubMed/NCBI

178 

Berlingieri MT, Manfioletti G, Santoro M, Bandiera A, Visconti R, Giancotti V and Fusco A: Inhibition of HMGI-C protein synthesis suppresses retrovirally induced neoplastic transformation of rat thyroid cells. Mol Cell Biol. 15:1545–1553. 1995. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

October 2019
Volume 55 Issue 4

Print ISSN: 1019-6439
Online ISSN:1791-2423

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Zhang, S., Mo, Q., & Wang, X. (2019). Oncological role of HMGA2 (Review). International Journal of Oncology, 55, 775-788. https://doi.org/10.3892/ijo.2019.4856
MLA
Zhang, S., Mo, Q., Wang, X."Oncological role of HMGA2 (Review)". International Journal of Oncology 55.4 (2019): 775-788.
Chicago
Zhang, S., Mo, Q., Wang, X."Oncological role of HMGA2 (Review)". International Journal of Oncology 55, no. 4 (2019): 775-788. https://doi.org/10.3892/ijo.2019.4856