Epigenetic modulators hydralazine and sodium valproate act synergistically in VEGI-mediated anti-angiogenesis and VEGF interference in human osteosarcoma and vascular endothelial cells

  • Authors:
    • Shunsuke Kumanishi
    • Koji Yamanegi
    • Hiroshi Nishiura
    • Yuki Fujihara
    • Kenta Kobayashi
    • Keiji Nakasho
    • Hiroyuki Futani
    • Shinichi Yoshiya
  • View Affiliations

  • Published online on: May 23, 2019     https://doi.org/10.3892/ijo.2019.4811
  • Pages: 167-178
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Vascular endothelial growth inhibitor (VEGI; also referred to as TNFSF15 or TL1A) is involved in the modulation of vascular homeostasis. VEGI is known to operate via two receptors: Death receptor‑3 (DR3) and decoy receptor‑3 (DcR3). DR3, which is thus far the only known functional receptor for VEGI, contains a death domain and induces cell apoptosis. DcR3 is secreted as a soluble protein and antagonizes VEGI/DR3 interaction. Overexpression of DcR3 and downregulation of VEGI have been detected in a number of cancers. The aim of the present study was to investigate the effects of sodium valproate (VPA), a histone deacetylase inhibitor, in combination with hydralazine hydrochloride (Hy), a DNA methylation inhibitor, on the expression of VEGI and its related receptors in human osteosarcoma (OS) cell lines and human microvascular endothelial (HMVE) cells. Combination treatment with Hy and VPA synergistically induced the expression of VEGI and DR3 in both OS and HMVE cells, without inducing DcR3 secretion. In addition, it was observed that the combination of VPA and Hy significantly enhanced the inhibitory effect on vascular tube formation by VEGI/DR3 autocrine and paracrine pathways. Furthermore, the VEGI/VEGF‑A immune complex was pulled down by immunoprecipitation. Taken together, these findings suggest that DNA methyltransferase and histone deacetylase inhibitors not only have the potential to induce the re‑expression of tumor suppressor genes in cancer cells, but also exert anti‑angiogenic effects, via enhancement of the VEGI/DR3 pathway and VEGI/VEGF‑A interference.

References

1 

Dai Z, Tang H, Pan Y, Chen J, Li Y and Zhu J: Gene expression profiles and pathway enrichment analysis of human osteosarcoma cells exposed to sorafenib. FEBS Open Bio. 8:860–867. 2018. View Article : Google Scholar : PubMed/NCBI

2 

Qian M, Gong H, Yang X, Zhao J, Yan W, Lou Y, Peng D, Li Z and Xiao J: MicroRNA-493 inhibits the proliferation and invasion of osteosarcoma cells through directly targeting specificity protein 1. Oncol Lett. 15:8149–8156. 2018.PubMed/NCBI

3 

Jaenisch R and Bird A: Epigenetic regulation of gene expression: How the genome integrates intrinsic and environmental signals. Nat Genet. 33:245–254. 2003. View Article : Google Scholar : PubMed/NCBI

4 

Suzuki H, Gabrielson E, Chen W, Anbazhagan R, van Engeland M, Weijenberg MP, Herman JG and Baylin SB: A genomic screen for genes upregulated by demethylation and histone deacetylase inhibition in human colorectal cancer. Nat Genet. 31:141–149. 2002. View Article : Google Scholar : PubMed/NCBI

5 

Feller L, Kramer B and Lemmer J: Pathobiology of cancer metastasis: A short account. Cancer Cell Int. 12:242012. View Article : Google Scholar : PubMed/NCBI

6 

Yoo CB and Jones PA: Epigenetic therapy of cancer: Past, present and future. Nat Rev Drug Discov. 5:37–50. 2006. View Article : Google Scholar : PubMed/NCBI

7 

Hellebrekers DM, Jair KW, Viré E, Eguchi S, Hoebers NT, Fraga MF, Esteller M, Fuks F, Baylin SB, van Engeland M, et al: Angiostatic activity of DNA methyltransferase inhibitors. Mol Cancer Ther. 5:467–475. 2006. View Article : Google Scholar : PubMed/NCBI

8 

Deroanne CF, Bonjean K, Servotte S, Devy L, Colige A, Clausse N, Blacher S, Verdin E, Foidart JM, Nusgens BV, et al: Histone deacetylases inhibitors as anti-angiogenic agents altering vascular endothelial growth factor signaling. Oncogene. 21:427–436. 2002. View Article : Google Scholar : PubMed/NCBI

9 

Carmeliet P: Angiogenesis in life, disease and medicine. Nature. 438:932–936. 2005. View Article : Google Scholar : PubMed/NCBI

10 

Hsu YY, Shi GY, Wang KC, Ma CY, Cheng TL and Wu HL: Thrombomodulin promotes focal adhesion kinase activation and contributes to angiogenesis by binding to fibronectin. Oncotarget. 7:68122–68139. 2016. View Article : Google Scholar : PubMed/NCBI

11 

Li T, Kang G, Wang T and Huang H: Tumor angiogenesis and anti-angiogenic gene therapy for cancer. Oncol Lett. 16:687–702. 2018.PubMed/NCBI

12 

Tan KB, Harrop J, Reddy M, Young P, Terrett J, Emery J, Moore G and Truneh A: Characterization of a novel TNF-like ligand and recently described TNF ligand and TNF receptor superfamily genes and their constitutive and inducible expression in hematopoietic and non-hematopoietic cells. Gene. 204:35–46. 1997. View Article : Google Scholar

13 

Zhai Y, Ni J, Jiang GW, Lu J, Xing L, Lincoln C, Carter KC, Janat F, Kozak D, Xu S, et al: VEGI, a novel cytokine of the tumor necrosis factor family, is an angiogenesis inhibitor that suppresses the growth of colon carcinomas in vivo. FASEB J. 13:181–189. 1999. View Article : Google Scholar : PubMed/NCBI

14 

Kitson J, Raven T, Jiang YP, Goeddel DV, Giles KM, Pun KT, Grinham CJ, Brown R and Farrow SN: A death-domain-containing receptor that mediates apoptosis. Nature. 384:372–375. 1996. View Article : Google Scholar : PubMed/NCBI

15 

Migone TS, Zhang J, Luo X, Zhuang L, Chen C, Hu B, Hong JS, Perry JW, Chen SF, Zhou JXH, et al: TL1A is a TNF-like ligand for DR3 and TR6/DcR3 and functions as a T cell costimulator. Immunity. 16:479–492. 2002. View Article : Google Scholar : PubMed/NCBI

16 

Chinnaiyan AM, O'Rourke K, Yu GL, Lyons RH, Garg M, Duan DR, Xing L, Gentz R, Ni J and Dixit VM: Signal transduction by DR3, a death domain-containing receptor related to TNFR-1 and CD95. Science. 274:990–992. 1996. View Article : Google Scholar : PubMed/NCBI

17 

Bai C, Connolly B, Metzker ML, Hilliard CA, Liu X, Sandig V, Soderman A, Galloway SM, Liu Q, Austin CP, et al: Overexpression of M68/DcR3 in human gastrointestinal tract tumors independent of gene amplification and its location in a four-gene cluster. Proc Natl Acad Sci USA. 97:1230–1235. 2000. View Article : Google Scholar : PubMed/NCBI

18 

Yamanegi K, Kawabe M, Futani H, Nishiura H, Yamada N, Kato-Kogoe N, Kishimoto H, Yoshiya S and Nakasho K: Sodium valproate, a histone deacetylase inhibitor, modulates the vascular endothelial growth inhibitor-mediated cell death in human osteosarcoma and vascular endothelial cells. Int J Oncol. 46:1994–2002. 2015. View Article : Google Scholar : PubMed/NCBI

19 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-ΔΔC(T)) method. Methods. 25:402–408. 2001. View Article : Google Scholar

20 

Bolden JE, Peart MJ and Johnstone RW: Anticancer activities of histone deacetylase inhibitors. Nat Rev Drug Discov. 5:769–784. 2006. View Article : Google Scholar : PubMed/NCBI

21 

Siu LL, Pili R, Duran I, Messersmith WA, Chen EX, Sullivan R, MacLean M, King S, Brown S, Reid GK, et al: Phase I study of MGCD0103 given as a three-times-per-week oral dose in patients with advanced solid tumors. J Clin Oncol. 26:1940–1947. 2008. View Article : Google Scholar : PubMed/NCBI

22 

Schrump DS, Fischette MR, Nguyen DM, Zhao M, Li X, Kunst TF, Hancox A, Hong JA, Chen GA, Kruchin E, et al: Clinical and molecular responses in lung cancer patients receiving Romidepsin. Clin Cancer Res. 14:188–198. 2008. View Article : Google Scholar : PubMed/NCBI

23 

Xu S, Ren J, Chen HB, Wang Y, Liu Q, Zhang R, Jiang SW and Li J: Cytostatic and apoptotic effects of DNMT and HDAC inhibitors in endometrial cancer cells. Curr Pharm Des. 20:1881–1887. 2014. View Article : Google Scholar

24 

Chavez-Blanco A, Perez-Plasencia C, Perez-Cardenas E, Carrasco-Legleu C, Rangel-Lopez E, Segura-Pacheco B, Taja-Chayeb L, Trejo-Becerril C, Gonzalez-Fierro A, Candelaria M, et al: Antineoplastic effects of the DNA meth-ylation inhibitor hydralazine and the histone deacetylase inhibitor valproic acid in cancer cell lines. Cancer Cell Int. 6:22006. View Article : Google Scholar

25 

Bauman J, Shaheen M, Verschraegen CF, Belinsky SA, Houman Fekrazad M, Lee FC, Rabinowitz I, Ravindranathan M and Jones DV Jr: A phase I protocol of hydralazine and valproic acid in advanced, previously treated solid cancers. Transl Oncol. 7:349–354. 2014. View Article : Google Scholar

26 

Capobianco E, Mora A, La Sala D, Roberti A, Zaki N, Badidi E, Taranta M and Cinti C: Separate and combined effects of DNMT and HDAC inhibitors in treating human multi-drug resistant osteosarcoma HosDXR150 cell line. PLoS One. 9:e955962014. View Article : Google Scholar : PubMed/NCBI

27 

Takami N, Osawa K, Miura Y, Komai K, Taniguchi M, Shiraishi M, Sato K, Iguchi T, Shiozawa K, Hashiramoto A, et al: Hypermethylated promoter region of DR3, the death receptor 3 gene, in rheumatoid arthritis synovial cells. Arthritis Rheum. 54:779–787. 2006. View Article : Google Scholar : PubMed/NCBI

28 

Kaya M, Wada T, Akatsuka T, Kawaguchi S, Nagoya S, Shindoh M, Higashino F, Mezawa F, Okada F and Ishii S: Vascular endothelial growth factor expression in untreated osteosarcoma is predictive of pulmonary metastasis and poor prognosis. Clin Cancer Res. 6:572–577. 2000.PubMed/NCBI

29 

Qu Y, Xu J, Jiang T, Zhao H, Gao Y, Zheng C and Shi X: Difference in pre- and postchemotherapy vascular endothelial growth factor levels as a prognostic indicator in osteosarcoma. J Int Med Res. 39:1474–1482. 2011. View Article : Google Scholar : PubMed/NCBI

30 

Chelluri R, Caza T, Woodford MR, Reeder JE, Bratslavsky G and Byler T: Valproic acid alters angiogenic and trophic gene expression in human prostate cancer models. Anticancer Res. 36:5079–5086. 2016. View Article : Google Scholar : PubMed/NCBI

31 

Zhang C, Yang C, Feldman MJ, Wang H, Pang Y, Maggio DM, Zhu D, Nesvick CL, Dmitriev P, Bullova P, et al: Vorinostat suppresses hypoxia signaling by modulating nuclear translocation of hypoxia inducible factor 1 alpha. Oncotarget. 8:56110–56125. 2017.PubMed/NCBI

32 

Cinatl J Jr, Kotchetkov R, Blaheta R, Driever PH, Vogel JU and Cinatl J: Induction of differentiation and suppression of malignant phenotype of human neuroblastoma BE(2)-C cells by valproic acid: Enhancement by combination with interferon-alpha. Int J Oncol. 20:97–106. 2002.

33 

Yang GL, Zhao Z, Qin TT, Wang D, Chen L, Xiang R, Xi Z, Jiang R, Zhang ZS, Zhang J, et al: TNFSF15 inhibits VEGF-stimulated vascular hyperpermeability by inducing VEGFR2 dephosphorylation. FASEB J. 31:2001–2012. 2017. View Article : Google Scholar : PubMed/NCBI

34 

Qi JW, Qin TT, Xu LX, Zhang K, Yang GL, Li J, Xiao HY, Zhang ZS and Li LY: TNFSF15 inhibits vasculogenesis by regulating relative levels of membrane-bound and soluble isoforms of VEGF receptor 1. Proc Natl Acad Sci USA. 110:13863–13868. 2013. View Article : Google Scholar : PubMed/NCBI

35 

Zhang K, Cai HX, Gao S, Yang GL, Deng HT, Xu GC, Han J, Zhang QZ and Li LY: TNFSF15 suppresses VEGF production in endothelial cells by stimulating miR-29b expression via activation of JNK-GATA3 signals. Oncotarget. 7:69436–69449. 2016.PubMed/NCBI

36 

Deng HT, Liu HL, Zhai BB, Zhang K, Xu GC, Peng XM, Zhang QZ and Li LY: Vascular endothelial growth factor suppresses TNFSF15 production in endothelial cells by stimulating miR-31 and miR-20a expression via activation of Akt and Erk signals. FEBS Open Bio. 7:108–117. 2016. View Article : Google Scholar

37 

Spina E and Perugi G: Antiepileptic drugs: Indications other than epilepsy. Epileptic Disord. 6:57–75. 2004.PubMed/NCBI

38 

Kandler MR, Mah GT, Tejani AM and Stabler SN: Hydralazine for essential hypertension. Cochrane Database Syst Rev. 8:CD0049342010.

Related Articles

Journal Cover

July 2019
Volume 55 Issue 1

Print ISSN: 1019-6439
Online ISSN:1791-2423

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Kumanishi, S., Yamanegi, K., Nishiura, H., Fujihara, Y., Kobayashi, K., Nakasho, K. ... Yoshiya, S. (2019). Epigenetic modulators hydralazine and sodium valproate act synergistically in VEGI-mediated anti-angiogenesis and VEGF interference in human osteosarcoma and vascular endothelial cells. International Journal of Oncology, 55, 167-178. https://doi.org/10.3892/ijo.2019.4811
MLA
Kumanishi, S., Yamanegi, K., Nishiura, H., Fujihara, Y., Kobayashi, K., Nakasho, K., Futani, H., Yoshiya, S."Epigenetic modulators hydralazine and sodium valproate act synergistically in VEGI-mediated anti-angiogenesis and VEGF interference in human osteosarcoma and vascular endothelial cells". International Journal of Oncology 55.1 (2019): 167-178.
Chicago
Kumanishi, S., Yamanegi, K., Nishiura, H., Fujihara, Y., Kobayashi, K., Nakasho, K., Futani, H., Yoshiya, S."Epigenetic modulators hydralazine and sodium valproate act synergistically in VEGI-mediated anti-angiogenesis and VEGF interference in human osteosarcoma and vascular endothelial cells". International Journal of Oncology 55, no. 1 (2019): 167-178. https://doi.org/10.3892/ijo.2019.4811