1
|
Mattick JS: Non-coding RNAs: the
architects of eukaryotic complexity. EMBO Rep. 2:986–991. 2001.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Morceau F, Chateauvieux S, Gaigneaux A,
Dicato M and Diederich M: Long and short non-coding RNAs as
regulators of hematopoietic differentiation. Int J Mol Sci.
14:14744–14770. 2013. View Article : Google Scholar : PubMed/NCBI
|
3
|
Mattick JS and Makunin IV: Non-coding RNA.
Hum Mol Genet. 15(Spec 1): R17–R29. 2006. View Article : Google Scholar
|
4
|
Amaral PP and Mattick JS: Noncoding RNA in
development. Mamm Genome. 19:454–492. 2008. View Article : Google Scholar : PubMed/NCBI
|
5
|
Setoyama T, Ling H, Natsugoe S and Calin
GA: Non-coding RNAs for medical practice in oncology. Keio J Med.
60:106–113. 2011. View Article : Google Scholar : PubMed/NCBI
|
6
|
Vader P, Breakefield XO and Wood MJA:
Extracellular vesicles: emerging targets for cancer therapy. Trends
Mol Med. 20:385–393. 2014. View Article : Google Scholar : PubMed/NCBI
|
7
|
Mercer TR, Dinger ME and Mattick JS: Long
non-coding RNAs: insights into functions. Nat Rev Genet.
10:155–159. 2009. View
Article : Google Scholar : PubMed/NCBI
|
8
|
Prensner JR and Chinnaiyan AM: The
emergence of lncRNAs in cancer biology. Cancer Discov. 1:391–407.
2011. View Article : Google Scholar : PubMed/NCBI
|
9
|
Lee RC, Feinbaum RL and Ambros V: The
C. elegans heterochronic gene lin-4 encodes small RNAs with
antisense complementarity to lin-14. Cell. 75:843–854. 1993.
View Article : Google Scholar
|
10
|
Wightman B, Ha I and Ruvkun G:
Posttranscriptional regulation of the heterochronic gene lin-14 by
lin-4 mediates temporal pattern formation in C. elegans.
Cell. 75:855–862. 1993. View Article : Google Scholar : PubMed/NCBI
|
11
|
Zhang W, Dahlberg JE and Tam W: MicroRNAs
in tumorigenesis: a primer. Am J Pathol. 171:728–738. 2007.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Siomi H and Siomi MC: Posttranscriptional
regulation of microRNA biogenesis in animals. Mol Cell. 38:323–332.
2010. View Article : Google Scholar : PubMed/NCBI
|
13
|
Raisch J, Darfeuille-Michaud A and Nguyen
HTT: Role of microRNAs in the immune system, inflammation and
cancer. World J Gastroenterol. 19:2985–2996. 2013. View Article : Google Scholar : PubMed/NCBI
|
14
|
Ling H, Fabbri M and Calin GA: MicroRNAs
and other non-coding RNAs as targets for anticancer drug
development. Nat Rev Drug Discov. 12:847–865. 2013. View Article : Google Scholar : PubMed/NCBI
|
15
|
Calin GA, Dumitru CD, Shimizu M, et al:
Frequent deletions and down-regulation of micro-RNA genes miR15 and
miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci
USA. 99:15524–15529. 2002. View Article : Google Scholar : PubMed/NCBI
|
16
|
Yendamuri S and Calin GA: The role of
microRNA in human leukemia: a review. Leukemia. 23:1257–1263. 2009.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Balatti V, Pekarky Y, Rizzotto L and Croce
CM: miR deregulation in CLL. Adv Exp Med Biol. 792:309–325. 2013.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Gordon JEA, Wong JJ-L and Rasko JEJ:
MicroRNAs in myeloid malignancies. Br J Haematol. 162:162–176.
2013. View Article : Google Scholar
|
19
|
Srivastava S, Tsongalis GJ and Kaur P:
Recent advances in microRNA-mediated gene regulation in chronic
lymphocytic leukemia. Clin Biochem. 46:901–908. 2013. View Article : Google Scholar : PubMed/NCBI
|
20
|
Rossi S, Kopetz S, Davuluri R, Hamilton SR
and Calin GA: MicroRNAs, ultraconserved genes and colorectal
cancers. Int J Biochem Cell Biol. 42:1291–1297. 2010. View Article : Google Scholar : PubMed/NCBI
|
21
|
Hong L, Han Y, Zhou Y and Nita A:
Angiogenesis-related microRNAs in colon cancer. Expert Opin Biol
Ther. 13:77–84. 2013. View Article : Google Scholar : PubMed/NCBI
|
22
|
Hutchison J, Cohen Z, Onyeagucha BC, Funk
J and Nelson MA: How microRNAs influence both hereditary and
inflammatory-mediated colon cancers. Cancer Genet. 206:309–316.
2013. View Article : Google Scholar : PubMed/NCBI
|
23
|
Menéndez P, Villarejo P, Padilla D,
Menéndez JM and Rodríguez-Montes JA: Implications of the
histological determination of microRNAs in the screening, diagnosis
and prognosis of colorectal cancer. J Surg Oncol. 108:70–73.
2013.PubMed/NCBI
|
24
|
Ferracin M, Querzoli P, Calin GA and
Negrini M: MicroRNAs: toward the clinic for breast cancer patients.
Semin Oncol. 38:764–775. 2011. View Article : Google Scholar : PubMed/NCBI
|
25
|
Harquail J, Benzina S and Robichaud GA:
MicroRNAs and breast cancer malignancy: an overview of
miRNA-regulated cancer processes leading to metastasis. Cancer
Biomark. 11:269–280. 2012.PubMed/NCBI
|
26
|
Zhang ZJ and Ma SL: miRNAs in breast
cancer tumorigenesis (Review). Oncol Rep. 27:903–910.
2012.PubMed/NCBI
|
27
|
Mulrane L, McGee SF, Gallagher WM and
O’Connor DP: miRNA dysregulation in breast cancer. Cancer Res.
73:6554–6562. 2013. View Article : Google Scholar : PubMed/NCBI
|
28
|
Singh R and Mo Y-Y: Role of microRNAs in
breast cancer. Cancer Biol Ther. 14:201–212. 2013. View Article : Google Scholar : PubMed/NCBI
|
29
|
John K, Wu J, Lee B-W and Farah CS:
MicroRNAs in head and neck cancer. Int J Dent. 2013:6502182013.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Nagadia R, Pandit P, Coman WB,
Cooper-White J and Punyadeera C: miRNAs in head and neck cancer
revisited. Cell Oncol (Dordr). 36:1–7. 2013. View Article : Google Scholar : PubMed/NCBI
|
31
|
Nohata N, Hanazawa T, Kinoshita T, Okamoto
Y and Seki N: MicroRNAs function as tumor suppressors or oncogenes:
aberrant expression of microRNAs in head and neck squamous cell
carcinoma. Auris Nasus Larynx. 40:143–149. 2013. View Article : Google Scholar : PubMed/NCBI
|
32
|
Tu HF, Lin SC and Chang KW: MicroRNA
aberrances in head and neck cancer: pathogenetic and clinical
significance. Curr Opin Otolaryngol Head Neck Surg. 21:104–111.
2013. View Article : Google Scholar : PubMed/NCBI
|
33
|
Song JH and Meltzer SJ: MicroRNAs in
pathogenesis, diagnosis, and treatment of gastroesophageal cancers.
Gastroenterology. 143:35–47.e2. 2012. View Article : Google Scholar : PubMed/NCBI
|
34
|
Wang F, Sun GP, Zou YF, Hao JQ, Zhong F
and Ren WJ: MicroRNAs as promising biomarkers for gastric cancer.
Cancer Biomark. 11:259–267. 2012.PubMed/NCBI
|
35
|
Gao M, Yin H and Fei ZW: Clinical
application of microRNA in gastric cancer in Eastern Asian area.
World J Gastroenterol. 19:2019–2027. 2013. View Article : Google Scholar : PubMed/NCBI
|
36
|
Song S and Ajani JA: The role of microRNAs
in cancers of the upper gastrointestinal tract. Nat Rev
Gastroenterol Hepatol. 10:109–118. 2013. View Article : Google Scholar : PubMed/NCBI
|
37
|
Kapranov P, Cheng J, Dike S, et al: RNA
maps reveal new RNA classes and a possible function for pervasive
transcription. Science. 316:1484–1488. 2007. View Article : Google Scholar : PubMed/NCBI
|
38
|
Okazaki Y, Furuno M, Kasukawa T, et al:
Analysis of the mouse transcriptome based on functional annotation
of 60,770 full-length cDNAs. Nature. 420:563–573. 2002. View Article : Google Scholar : PubMed/NCBI
|
39
|
Esteller M: Non-coding RNAs in human
disease. Nat Rev Genet. 12:861–874. 2011. View Article : Google Scholar
|
40
|
Spizzo R, Almeida MI, Colombatti A and
Calin GA: Long non-coding RNAs and cancer: a new frontier of
translational research? Oncogene. 31:4577–4587. 2012. View Article : Google Scholar : PubMed/NCBI
|
41
|
Tang JY, Lee JC, Chang YT, Hou MF, Huang
HW, Liaw CC and Chang HW: Long noncoding RNAs-related diseases,
cancers, and drugs. Sci World J. 2013:9435392013.PubMed/NCBI
|
42
|
Van Roosbroeck K, Pollet J and Calin GA:
miRNAs and long noncoding RNAs as biomarkers in human diseases.
Expert Rev Mol Diagn. 13:183–204. 2013.PubMed/NCBI
|
43
|
Shi X, Sun M, Liu H, Yao Y and Song Y:
Long non-coding RNAs: a new frontier in the study of human
diseases. Cancer Lett. 339:159–166. 2013. View Article : Google Scholar : PubMed/NCBI
|
44
|
Fitzgerald KA and Caffrey DR: Long
noncoding RNAs in innate and adaptive immunity. Curr Opin Immunol.
26:140–146. 2014. View Article : Google Scholar : PubMed/NCBI
|
45
|
Jendrzejewski J, He H, Radomska HS, et al:
The polymorphism rs944289 predisposes to papillary thyroid
carcinoma through a large intergenic noncoding RNA gene of tumor
suppressor type. Proc Natl Acad Sci USA. 109:8646–8651. 2012.
View Article : Google Scholar : PubMed/NCBI
|
46
|
Fan M, Li X, Jiang W, Huang Y, Li J and
Wang Z: A long non-coding RNA, PTCSC3, as a tumor suppressor and a
target of miRNAs in thyroid cancer cells. Exp Ther Med.
5:1143–1146. 2013.PubMed/NCBI
|
47
|
Hessels D and Schalken JA: The use of PCA3
in the diagnosis of prostate cancer. Nat Rev Urol. 6:255–261. 2009.
View Article : Google Scholar : PubMed/NCBI
|
48
|
Day JR, Jost M, Reynolds MA, Groskopf J
and Rittenhouse H: PCA3: from basic molecular science to the
clinical lab. Cancer Lett. 301:1–6. 2011. View Article : Google Scholar : PubMed/NCBI
|
49
|
Pasmant E, Laurendeau I, Héron D, Vidaud
M, Vidaud D and Bièche I: Characterization of a germ-line deletion,
including the entire INK4/ARF locus, in a melanoma-neural system
tumor family: identification of ANRIL, an antisense noncoding RNA
whose expression coclusters with ARF. Cancer Res. 67:3963–3969.
2007. View Article : Google Scholar
|
50
|
Iacobucci I, Sazzini M, Garagnani P, et
al: A polymorphism in the chromosome 9p21 ANRIL locus is associated
to Philadelphia positive acute lymphoblastic leukemia. Leuk Res.
35:1052–1059. 2011. View Article : Google Scholar : PubMed/NCBI
|
51
|
Cheetham SW, Gruhl F, Mattick JS and
Dinger ME: Long noncoding RNAs and the genetics of cancer. Br J
Cancer. 108:2419–2425. 2013. View Article : Google Scholar : PubMed/NCBI
|
52
|
Cheng W, Zhang Z and Wang J: Long
noncoding RNAs: new players in prostate cancer. Cancer Lett.
339:8–14. 2013. View Article : Google Scholar : PubMed/NCBI
|
53
|
Ji P, Diederichs S, Wang W, et al:
MALAT-1, a novel noncoding RNA, and thymosin beta4 predict
metastasis and survival in early-stage non-small cell lung cancer.
Oncogene. 22:8031–8041. 2003. View Article : Google Scholar : PubMed/NCBI
|
54
|
Gutschner T and Diederichs S: The
hallmarks of cancer: a long non-coding RNA point of view. RNA Biol.
9:703–719. 2012. View Article : Google Scholar : PubMed/NCBI
|
55
|
Li CH and Chen Y: Targeting long
non-coding RNAs in cancers: progress and prospects. Int J Biochem
Cell Biol. 45:1895–1910. 2013. View Article : Google Scholar : PubMed/NCBI
|
56
|
Martens-Uzunova ES, Olvedy M and Jenster
G: Beyond microRNA-novel RNAs derived from small non-coding RNA and
their implication in cancer. Cancer Lett. 340:201–211. 2013.
View Article : Google Scholar : PubMed/NCBI
|
57
|
Chen X, Ba Y, Ma L, et al:
Characterization of microRNAs in serum: a novel class of biomarkers
for diagnosis of cancer and other diseases. Cell Res. 18:997–1006.
2008. View Article : Google Scholar : PubMed/NCBI
|
58
|
Gilad S, Meiri E, Yogev Y, et al: Serum
microRNAs are promising novel biomarkers. PLoS One. 3:e31482008.
View Article : Google Scholar : PubMed/NCBI
|
59
|
De Planell-Saguer M and Rodicio MC:
Analytical aspects of microRNA in diagnostics: a review. Anal Chim
Acta. 699:134–152. 2011.PubMed/NCBI
|
60
|
Ajit SK: Circulating microRNAs as
biomarkers, therapeutic targets, and signaling molecules. Sensors
(Basel). 12:3359–3369. 2012. View Article : Google Scholar : PubMed/NCBI
|
61
|
Schwarzenbach H, Nishida N, Calin GA and
Pantel K: Clinical relevance of circulating cell-free microRNAs in
cancer. Nat Rev Clin Oncol. 11:145–156. 2014. View Article : Google Scholar : PubMed/NCBI
|
62
|
Lawrie CH, Gal S, Dunlop HM, et al:
Detection of elevated levels of tumour-associated microRNAs in
serum of patients with diffuse large B-cell lymphoma. Br J
Haematol. 141:672–675. 2008. View Article : Google Scholar : PubMed/NCBI
|
63
|
Luo X, Stock C, Burwinkel B and Brenner H:
Identification and evaluation of plasma microRNAs for early
detection of colorectal cancer. PLoS One. 8:e628802013. View Article : Google Scholar : PubMed/NCBI
|
64
|
Wang J, Huang S-K, Zhao M, et al:
Identification of a circulating microRNA signature for colorectal
cancer detection. PLoS One. 9:e874512014. View Article : Google Scholar : PubMed/NCBI
|
65
|
Komatsu S, Ichikawa D, Takeshita H, et al:
Circulating microRNAs in plasma of patients with oesophageal
squamous cell carcinoma. Br J Cancer. 105:104–111. 2011. View Article : Google Scholar : PubMed/NCBI
|
66
|
Wu C, Wang C, Guan X, et al: Diagnostic
and prognostic implications of a serum miRNA panel in oesophageal
squamous cell carcinoma. PLoS One. 9:e922922014. View Article : Google Scholar : PubMed/NCBI
|
67
|
Chan M, Liaw CS, Ji SM, et al:
Identification of circulating microRNA signatures for breast cancer
detection. Clin Cancer Res. 19:4477–4487. 2013. View Article : Google Scholar : PubMed/NCBI
|
68
|
Zearo S, Kim E, Zhu Y, Zhao JT, Sidhu SB,
Robinson BG and Soon PS: MicroRNA-484 is more highly expressed in
serum of early breast cancer patients compared to healthy
volunteers. BMC Cancer. 14:2002014. View Article : Google Scholar : PubMed/NCBI
|
69
|
Tsujiura M, Ichikawa D, Komatsu S, et al:
Circulating microRNAs in plasma of patients with gastric cancers.
Br J Cancer. 102:1174–1179. 2010. View Article : Google Scholar : PubMed/NCBI
|
70
|
Zhu C, Ren C, Han J, et al: A
five-microRNA panel in plasma was identified as potential biomarker
for early detection of gastric cancer. Br J Cancer. 110:2291–2299.
2014. View Article : Google Scholar : PubMed/NCBI
|
71
|
Zheng H, Liu JY, Song FJ and Chen KX:
Advances in circulating microRNAs as diagnostic and prognostic
markers for ovarian cancer. Cancer Biol Med. 10:123–130.
2013.PubMed/NCBI
|
72
|
Shapira I, Oswald M, Lovecchio J, et al:
Circulating biomarkers for detection of ovarian cancer and
predicting cancer outcomes. Br J Cancer. 110:976–983. 2014.
View Article : Google Scholar : PubMed/NCBI
|
73
|
Kosaka N, Iguchi H and Ochiya T:
Circulating microRNA in body fluid: a new potential biomarker for
cancer diagnosis and prognosis. Cancer Sci. 101:2087–2092. 2010.
View Article : Google Scholar : PubMed/NCBI
|
74
|
Ahmed KA and Xiang J: Mechanisms of
cellular communication through intercellular protein transfer. J
Cell Mol Med. 15:1458–1473. 2011. View Article : Google Scholar : PubMed/NCBI
|
75
|
Ogorevc E, Kralj-Iglic V and Veranic P:
The role of extracellular vesicles in phenotypic cancer
transformation. Radiol Oncol. 47:197–205. 2013. View Article : Google Scholar : PubMed/NCBI
|
76
|
Lee TH, D’Asti E, Magnus N, Al-Nedawi K,
Meehan B and Rak J: Microvesicles as mediators of intercellular
communication in cancer - the emerging science of cellular
‘debris’. Semin Immunopathol. 33:455–467. 2011. View Article : Google Scholar : PubMed/NCBI
|
77
|
Zhang HG and Grizzle WE: Exosomes: a novel
pathway of local and distant intercellular communication that
facilitates the growth and metastasis of neoplastic lesions. Am J
Pathol. 184:28–41. 2014. View Article : Google Scholar : PubMed/NCBI
|
78
|
Choi DS, Kim DK, Kim YK and Gho YS:
Proteomics, transcriptomics and lipidomics of exosomes and
ectosomes. Proteomics. 13:1554–1571. 2013. View Article : Google Scholar : PubMed/NCBI
|
79
|
El Andaloussi S, Mäger I, Breakefield XO
and Wood MJA: Extracellular vesicles: biology and emerging
therapeutic opportunities. Nat Rev Drug Discov. 12:347–357.
2013.PubMed/NCBI
|
80
|
Raposo G and Stoorvogel W: Extracellular
vesicles: exosomes, microvesicles, and friends. J Cell Biol.
200:373–383. 2013. View Article : Google Scholar : PubMed/NCBI
|
81
|
Van der Pol E, Böing AN, Harrison P, Sturk
A and Nieuwland R: Classification, functions, and clinical
relevance of extracellular vesicles. Pharmacol Rev. 64:676–705.
2012.PubMed/NCBI
|
82
|
Simpson RJ, Jensen SS and Lim JWE:
Proteomic profiling of exosomes: current perspectives. Proteomics.
8:4083–4099. 2008. View Article : Google Scholar : PubMed/NCBI
|
83
|
Nazarenko I, Rupp A-K and Altevogt P:
Exosomes as a potential tool for a specific delivery of functional
molecules. Methods Mol Biol. 1049:495–511. 2013. View Article : Google Scholar : PubMed/NCBI
|
84
|
Principe S, Hui ABY, Bruce J, Sinha A, Liu
FF and Kislinger T: Tumor-derived exosomes and microvesicles in
head and neck cancer: implications for tumor biology and biomarker
discovery. Proteomics. 13:1608–1623. 2013. View Article : Google Scholar : PubMed/NCBI
|
85
|
Akers JC, Gonda D, Kim R, Carter BS and
Chen CC: Biogenesis of extracellular vesicles (EV): exosomes,
microvesicles, retro-virus-like vesicles, and apoptotic bodies. J
Neurooncol. 113:1–11. 2013. View Article : Google Scholar : PubMed/NCBI
|
86
|
Mathivanan S, Ji H and Simpson RJ:
Exosomes: extracellular organelles important in intercellular
communication. J Proteomics. 73:1907–1920. 2010. View Article : Google Scholar : PubMed/NCBI
|
87
|
Kosaka N, Yoshioka Y, Hagiwara K, Tominaga
N, Katsuda T and Ochiya T: Trash or treasure: extracellular
microRNAs and cell-to-cell communication. Front Genet. 4:1732013.
View Article : Google Scholar : PubMed/NCBI
|
88
|
Martins VR, Dias MS and Hainaut P:
Tumor-cell-derived microvesicles as carriers of molecular
information in cancer. Curr Opin Oncol. 25:66–75. 2013. View Article : Google Scholar : PubMed/NCBI
|
89
|
Kahlert C, Melo SA, Protopopov A, et al:
Identification of double-stranded genomic DNA spanning all
chromosomes with mutated KRAS and p53 DNA in the serum exosomes of
patients with pancreatic cancer. J Biol Chem. 289:3869–3875. 2014.
View Article : Google Scholar : PubMed/NCBI
|
90
|
Fang DY, King HW, Li JY and Gleadle JM:
Exosomes and the kidney: blaming the messenger. Nephrology
(Carlton). 18:1–10. 2013. View Article : Google Scholar : PubMed/NCBI
|
91
|
Gajos-Michniewicz A, Duechler M and Czyz
M: MiRNA in melanoma-derived exosomes. Cancer Lett. 347:29–37.
2014. View Article : Google Scholar
|
92
|
Peinado H, Lavotshkin S and Lyden D: The
secreted factors responsible for pre-metastatic niche formation:
old sayings and new thoughts. Semin Cancer Biol. 21:139–146. 2011.
View Article : Google Scholar : PubMed/NCBI
|
93
|
Théry C, Amigorena S, Raposo G and Clayton
A: Isolation and characterization of exosomes from cell culture
supernatants and biological fluids. Curr Protoc Cell Biol. Chapter
3(Unit 3): 222006.PubMed/NCBI
|
94
|
Lässer C: Identification and analysis of
circulating exosomal microRNA in human body fluids. Methods Mol
Biol. 1024:109–128. 2013.PubMed/NCBI
|
95
|
Gonda DD, Akers JC, Kim R, Kalkanis SN,
Hochberg FH, Chen CC and Carter BS: Neuro-oncologic applications of
exosomes, microvesicles, and other nano-sized extracellular
particles. Neurosurgery. 72:501–510. 2013. View Article : Google Scholar : PubMed/NCBI
|
96
|
Lässer C, Eldh M and Lötvall J: Isolation
and characterization of RNA-containing exosomes. J Vis Exp.
e30372012.
|
97
|
Valadi H, Ekström K, Bossios A, Sjöstrand
M, Lee JJ and Lötvall JO: Exosome-mediated transfer of mRNAs and
microRNAs is a novel mechanism of genetic exchange between cells.
Nat Cell Biol. 9:654–659. 2007. View Article : Google Scholar : PubMed/NCBI
|
98
|
Jenjaroenpun P, Kremenska Y, Nair VM,
Kremenskoy M, Joseph B and Kurochkin IV: Characterization of RNA in
exosomes secreted by human breast cancer cell lines using
next-generation sequencing. Peer J. 1:e2012013. View Article : Google Scholar : PubMed/NCBI
|
99
|
Kruger S, Abd Elmageed ZY, Hawke DH, et
al: Molecular characterization of exosome-like vesicles from breast
cancer cells. BMC Cancer. 14:442014. View Article : Google Scholar : PubMed/NCBI
|
100
|
Feng DQ, Huang B, Li J, et al: Selective
miRNA expression profile in chronic myeloid leukemia K562
cell-derived exosomes. Asian Pac J Cancer Prev. 14:7501–7508. 2013.
View Article : Google Scholar : PubMed/NCBI
|
101
|
Xiao D, Ohlendorf J, Chen Y, et al:
Identifying mRNA, microRNA and protein profiles of melanoma
exosomes. PLoS ONE. 7:e468742012. View Article : Google Scholar : PubMed/NCBI
|
102
|
Rappa G, Mercapide J, Anzanello F, Pope RM
and Lorico A: Biochemical and biological characterization of
exosomes containing prominin-1/CD133. Mol Cancer. 12:622013.
View Article : Google Scholar : PubMed/NCBI
|
103
|
Hessvik NP, Phuyal S, Brech A, Sandvig K
and Llorente A: Profiling of microRNAs in exosomes released from
PC-3 prostate cancer cells. Biochim Biophys Acta. 1819.1154–1163.
2012.PubMed/NCBI
|
104
|
Kobayashi M, Salomon C, Tapia J, Illanes
SE, Mitchell MD and Rice GE: Ovarian cancer cell invasiveness is
associated with discordant exosomal sequestration of Let-7 miRNA
and miR-200. J Transl Med. 12:42014. View Article : Google Scholar : PubMed/NCBI
|
105
|
Ohshima K, Inoue K, Fujiwara A, et al:
Let-7 microRNA family is selectively secreted into the
extracellular environment via exosomes in a metastatic gastric
cancer cell line. PLoS One. 5:e132472010. View Article : Google Scholar : PubMed/NCBI
|
106
|
Zöller M: Pancreatic cancer diagnosis by
free and exosomal miRNA. World J Gastrointest Pathophysiol.
4:74–90. 2013.PubMed/NCBI
|
107
|
Chiba M, Kimura M and Asari S: Exosomes
secreted from human colorectal cancer cell lines contain mRNAs,
microRNAs and natural antisense RNAs, that can transfer into the
human hepatoma HepG2 and lung cancer A549 cell lines. Oncol Rep.
28:1551–1558. 2012.
|
108
|
Yang M, Chen J, Su F, et al: Microvesicles
secreted by macrophages shuttle invasion-potentiating microRNAs
into breast cancer cells. Mol Cancer. 10:1172011. View Article : Google Scholar : PubMed/NCBI
|
109
|
Umezu T, Ohyashiki K, Kuroda M and
Ohyashiki JH: Leukemia cell to endothelial cell communication via
exosomal miRNAs. Oncogene. 32:2747–2755. 2013. View Article : Google Scholar : PubMed/NCBI
|
110
|
Kosaka N, Iguchi H, Yoshioka Y, Hagiwara
K, Takeshita F and Ochiya T: Competitive interactions of cancer
cells and normal cells via secretory microRNAs. J Biol Chem.
287:1397–1405. 2012. View Article : Google Scholar : PubMed/NCBI
|
111
|
Roccaro AM, Sacco A, Maiso P, et al: BM
mesenchymal stromal cell-derived exosomes facilitate multiple
myeloma progression. J Clin Invest. 123:1542–1555. 2013. View Article : Google Scholar : PubMed/NCBI
|
112
|
Valencia K, Luis-Ravelo D, Bovy N, et al:
miRNA cargo within exosome-like vesicle transfer influences
metastatic bone colonization. Mol Oncol. 8:689–703. 2014.
View Article : Google Scholar : PubMed/NCBI
|
113
|
Zhou W, Fong MY, Min Y, et al:
Cancer-secreted miR-105 destroys vascular endothelial barriers to
promote metastasis. Cancer Cell. 25:501–515. 2014. View Article : Google Scholar : PubMed/NCBI
|
114
|
Chen W, Zhong S, Ji M, et al: MicroRNAs
delivered by extracellular vesicles: an emerging resistance
mechanism for breast cancer. Tumour Biol. 35:2883–2892. 2014.
View Article : Google Scholar : PubMed/NCBI
|
115
|
Xiao X, Yu S, Li S, et al: Exosomes:
decreased sensitivity of lung cancer A549 cells to cisplatin. PLoS
One. 9:e895342014. View Article : Google Scholar : PubMed/NCBI
|
116
|
King HW, Michael MZ and Gleadle JM:
Hypoxic enhancement of exosome release by breast cancer cells. BMC
Cancer. 12:4212012. View Article : Google Scholar : PubMed/NCBI
|
117
|
Tadokoro H, Umezu T, Ohyashiki K, Hirano T
and Ohyashiki JH: Exosomes derived from hypoxic leukemia cells
enhance tube formation in endothelial cells. J Biol Chem.
288:34343–34351. 2013. View Article : Google Scholar : PubMed/NCBI
|
118
|
Skog J, Würdinger T, van Rijn S, et al:
Glioblastoma microvesicles transport RNA and proteins that promote
tumour growth and provide diagnostic biomarkers. Nat Cell Biol.
10:1470–1476. 2008. View Article : Google Scholar : PubMed/NCBI
|
119
|
Taylor DD and Gercel-Taylor C: MicroRNA
signatures of tumor-derived exosomes as diagnostic biomarkers of
ovarian cancer. Gynecol Oncol. 110:13–21. 2008. View Article : Google Scholar : PubMed/NCBI
|
120
|
Tanaka Y, Kamohara H, Kinoshita K, et al:
Clinical impact of serum exosomal microRNA-21 as a clinical
biomarker in human esophageal squamous cell carcinoma. Cancer.
119:1159–1167. 2013. View Article : Google Scholar : PubMed/NCBI
|
121
|
Ogata-Kawata H, Izumiya M, Kurioka D, et
al: Circulating exosomal microRNAs as biomarkers of colon cancer.
PLoS One. 9:e929212014. View Article : Google Scholar : PubMed/NCBI
|
122
|
Rabinowits G, Gerçel-Taylor C, Day JM,
Taylor DD and Kloecker GH: Exosomal microRNA: a diagnostic marker
for lung cancer. Clin Lung Cancer. 10:42–46. 2009. View Article : Google Scholar : PubMed/NCBI
|
123
|
Cazzoli R, Buttitta F, Di Nicola M,
Malatesta S, Marchetti A, Rom WN and Pass HI: microRNAs derived
from circulating exosomes as noninvasive biomarkers for screening
and diagnosing lung cancer. J Thorac Oncol. 8:1156–1162. 2013.
View Article : Google Scholar : PubMed/NCBI
|
124
|
Rodríguez M, Silva J, López-Alfonso A, et
al: Different exosome cargo from plasma/bronchoalveolar lavage in
non-small-cell lung cancer. Genes Chromosomes Cancer. Apr
25–2014.(Epub ahead of print).
|
125
|
Li L, Masica D, Ishida M, et al: Human
bile contains microRNA-laden extracellular vesicles that can be
used for cholangiocarcinoma diagnosis. Hepatology. Feb 4–2014.(Epub
ahead of print).
|
126
|
Liu J, Sun H, Wang X, Yu Q, Li S, Yu X and
Gong W: Increased exosomal microRNA-21 and microRNA-146a levels in
the cervicovaginal lavage specimens of patients with cervical
cancer. Int J Mol Sci. 15:758–773. 2014. View Article : Google Scholar : PubMed/NCBI
|
127
|
Kogure T, Yan IK, Lin W-L and Patel T:
Extracellular vesicle-mediated transfer of a novel long noncoding
RNA TUC339: A mechanism of intercellular signaling in human
hepatocellular cancer. Genes Cancer. 4:261–272. 2013. View Article : Google Scholar : PubMed/NCBI
|
128
|
Takahashi K, Yan IK, Haga H and Patel T:
Modulation of hypoxia-signaling pathways by extracellular linc-RoR.
J Cell Sci. 127:1585–1594. 2014. View Article : Google Scholar : PubMed/NCBI
|
129
|
Arita T, Ichikawa D, Konishi H, et al:
Circulating long non-coding RNAs in plasma of patients with gastric
cancer. Anticancer Res. 33:3185–3193. 2013.PubMed/NCBI
|
130
|
Ren S, Wang F, Shen J, et al: Long
non-coding RNA metastasis associated in lung adenocarcinoma
transcript 1 derived miniRNA as a novel plasma-based biomarker for
diagnosing prostate cancer. Eur J Cancer. 49:2949–2959. 2013.
View Article : Google Scholar : PubMed/NCBI
|
131
|
Panzitt K, Tschernatsch MMO, Guelly C, et
al: Characterization of HULC, a novel gene with striking
up-regulation in hepatocellular carcinoma, as noncoding RNA.
Gastroenterology. 132:330–342. 2007. View Article : Google Scholar : PubMed/NCBI
|
132
|
Xie H, Ma H and Zhou D: Plasma HULC as a
promising novel biomarker for the detection of hepatocellular
carcinoma. Biomed Res Int. 2013:1361062013.PubMed/NCBI
|
133
|
Isin M, Ozgur E, Cetin G, Erten N, Aktan
M, Gezer U and Dalay N: Investigation of circulating lncRNAs in
B-cell neoplasms. Clin Chim Acta. 431:255–259. 2014. View Article : Google Scholar : PubMed/NCBI
|
134
|
Lässer C: Exosomal RNA as biomarkers and
the therapeutic potential of exosome vectors. Expert Opin Biol
Ther. 12(Suppl 1): S189–S197. 2012.PubMed/NCBI
|
135
|
Lee Y, El Andaloussi S and Wood MJA:
Exosomes and microvesicles: extracellular vesicles for genetic
information transfer and gene therapy. Hum Mol Genet. 21:R125–R134.
2012. View Article : Google Scholar : PubMed/NCBI
|
136
|
Kosaka N, Takeshita F, Yoshioka Y,
Hagiwara K, Katsuda T, Ono M and Ochiya T: Exosomal
tumor-suppressive microRNAs as novel cancer therapy: ‘exocure’ is
another choice for cancer treatment. Adv Drug Deliv Rev.
65:376–382. 2013. View Article : Google Scholar : PubMed/NCBI
|
137
|
Ohno S, Takanashi M, Sudo K, et al:
Systemically injected exosomes targeted to EGFR deliver antitumor
microRNA to breast cancer cells. Mol Ther. 21:185–191. 2013.
View Article : Google Scholar : PubMed/NCBI
|
138
|
Alvarez-Erviti L, Seow Y, Yin H, Betts C,
Lakhal S and Wood MJA: Delivery of siRNA to the mouse brain by
systemic injection of targeted exosomes. Nat Biotechnol.
29:341–345. 2011. View Article : Google Scholar : PubMed/NCBI
|
139
|
Wahlgren J, De Karlson LT, Brisslert M,
Vaziri Sani F, Telemo E, Sunnerhagen P and Valadi H: Plasma
exosomes can deliver exogenous short interfering RNA to monocytes
and lymphocytes. Nucleic Acids Res. 40:e1302012. View Article : Google Scholar : PubMed/NCBI
|
140
|
Bronisz A, Wang Y, Nowicki MO, et al:
Extracellular vesicles modulate the glioblastoma microenvironment
via a tumor suppression signaling network directed by miR-1. Cancer
Res. 74:738–750. 2014. View Article : Google Scholar : PubMed/NCBI
|