Open Access

ERGO: A pilot study of ketogenic diet in recurrent glioblastoma

Erratum in: /ijo/45/6/2605

  • Authors:
    • Johannes Rieger
    • Oliver Bähr
    • Gabriele D. Maurer
    • Elke Hattingen
    • Kea Franz
    • Daniel Brucker
    • Stefan Walenta
    • Ulrike Kämmerer
    • Johannes F. Coy
    • Michael Weller
    • Joachim P. Steinbach
  • View Affiliations

  • Published online on: April 11, 2014     https://doi.org/10.3892/ijo.2014.2382
  • Pages: 1843-1852
  • Copyright: © Rieger et al. This is an open access article distributed under the terms of Creative Commons Attribution License [CC BY_NC 3.0].

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Limiting dietary carbohydrates inhibits glioma growth in preclinical models. Therefore, the ERGO trial (NCT00575146) examined feasibility of a ketogenic diet in 20 patients with recurrent glioblastoma. Patients were put on a low-carbohydrate, ketogenic diet containing plant oils. Feasibility was the primary endpoint, secondary endpoints included the percentage of patients reaching urinary ketosis, progression-free survival (PFS) and overall survival. The effects of a ketogenic diet alone or in combination with bevacizumab was also explored in an orthotopic U87MG glioblastoma model in nude mice. Three patients (15%) discontinued the diet for poor tolerability. No serious adverse events attributed to the diet were observed. Urine ketosis was achieved at least once in 12 of 13 (92%) evaluable patients. One patient achieved a minor response and two patients had stable disease after 6 weeks. Median PFS of all patients was 5 (range, 3-13) weeks, median survival from enrollment was 32 weeks. The trial allowed to continue the diet beyond progression. Six of 7 (86%) patients treated with bevacizumab and diet experienced an objective response, and median PFS on bevacizumab was 20.1 (range, 12-124) weeks, for a PFS at 6 months of 43%. In the mouse glioma model, ketogenic diet alone had no effect on median survival, but increased that of bevacizumab-treated mice from 52 to 58 days (p<0.05). In conclusion, a ketogenic diet is feasible and safe but probably has no significant clinical activity when used as single agent in recurrent glioma. Further clinical trials are necessary to clarify whether calorie restriction or the combination with other therapeutic modalities, such as radiotherapy or anti-angiogenic treatments, could enhance the efficacy of the ketogenic diet.

References

1. 

Warburg O, Posener K and Negelein E: Ueber den Stoffwechsel der Tumoren. Biochem Z. 152:319–344. 1924.(in German).

2. 

TCGA. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature. 455:1061–1068. 2008. View Article : Google Scholar : PubMed/NCBI

3. 

Elstrom RL, Bauer DE, Buzzai M, Karnauskas R, Harris MH, Plas DR, Zhuang H, Cinalli RM, Alavi A, Rudin CM and Thompson CB: Akt stimulates aerobic glycolysis in cancer cells. Cancer Res. 64:3892–3899. 2004. View Article : Google Scholar : PubMed/NCBI

4. 

Matoba S, Kang J, Patino WD, Wragg A, Boehm M, Gavrilova O, Hurley PJ, Bunz F and Hwang PM: p53 regulates mitochondrial respiration. Science. 312:1650–1653. 2006. View Article : Google Scholar : PubMed/NCBI

5. 

Wanka C, Brucker DP, Bähr O, Ronellenfitsch M, Weller M, Steinbach JP and Rieger J: Synthesis of cytochrome c oxidase 2: a p53-dependent metabolic regulator that promotes respiratory function and protects glioma and colon cancer cells from hypoxia-induced cell death. Oncogene. 31:3764–3776. 2012. View Article : Google Scholar

6. 

Bensaad K, Tsuruta A, Selak MA, Vidal MNC, Nakano K, Bartrons R, Gottlieb E and Vousden KH: TIGAR, a p53-inducible regulator of glycolysis and apoptosis. Cell. 126:107–120. 2006. View Article : Google Scholar : PubMed/NCBI

7. 

Wanka C, Steinbach JP and Rieger J: Tp53-induced glycolysis and apoptosis regulator (TIGAR) protects glioma cells from starvation-induced cell death by upregulating respiration and improving cellular redox homeostasis. J Biol Chem. 287:33436–33446. 2012. View Article : Google Scholar

8. 

Denko NC: Hypoxia, HIF1 and glucose metabolism in the solid tumour. Nat Rev Cancer. 8:705–713. 2008. View Article : Google Scholar : PubMed/NCBI

9. 

Papandreou I, Cairns RA, Fontana L, Lim AL and Denko NC: HIF-1 mediates adaptation to hypoxia by actively down-regulating mitochondrial oxygen consumption. Cell Metab. 3:187–197. 2006. View Article : Google Scholar : PubMed/NCBI

10. 

Liu Y, Li Y, Tian R, Liu W, Fei Z, Long Q, Wang X and Zhang X: The expression and significance of HIF-1alpha and GLUT-3 in glioma. Brain Res. 1304:149–154. 2009. View Article : Google Scholar : PubMed/NCBI

11. 

Roslin M, Henriksson R, Bergström P, Ungerstedt U and Bergenheim AT: Baseline levels of glucose metabolites, glutamate and glycerol in malignant glioma assessed by stereo-tactic microdialysis. J Neurooncol. 61:151–160. 2003. View Article : Google Scholar : PubMed/NCBI

12. 

Padma MV, Said S, Jacobs M, Hwang DR, Dunigan K, Satter M, Christian B, Ruppert J, Bernstein T, Kraus G and Mantil JC: Prediction of pathology and survival by FDG PET in gliomas. J Neurooncol. 64:227–237. 2003. View Article : Google Scholar : PubMed/NCBI

13. 

Hirata K, Terasaka S, Shiga T, Hattori N, Magota K, Kobayashi H, Yamaguchi S, Houkin K, Tanaka S, Kuge Y and Tamaki N: (18)F-Fluoromisonidazole positron emission tomography may differentiate glioblastoma multiforme from less malignant gliomas. Eur J Nucl Med Mol Imaging. 39:760–770. 2012. View Article : Google Scholar

14. 

Maher EA, Marin-Valencia I, Bachoo RM, Mashimo T, Raisanen J, Hatanpaa KJ, Jindal A, Jeffrey FM, Choi C, Madden C, Mathews D, Pascual JM, Mickey BE, Malloy CR and Deberardinis RJ: Metabolism of [U-(13) C]glucose in human brain tumors in vivo. NMR Biomed. 25:1234–1244. 2012.

15. 

Marin-Valencia I, Yang C, Mashimo T, Cho S, Baek H, Yang X, Rajagopalan KN, Maddie M, Vemireddy V, Zhao Z, Cai L, Good L, Tu BP, Hatanpaa KJ, Mickey BE, Matés JM, Pascual JM, Maher EA, Malloy CR, Deberardinis RJ and Bachoo RM: Analysis of tumor metabolism reveals mitochondrial glucose oxidation in genetically diverse human glioblastomas in the mouse brain in vivo. Cell Metab. 15:827–837. 2012. View Article : Google Scholar

16. 

Ward PS and Thompson CB: Metabolic reprogramming: a cancer hallmark even Warburg did not anticipate. Cancer Cell. 21:297–308. 2012. View Article : Google Scholar : PubMed/NCBI

17. 

Jeon S, Chandel NS and Hay N: AMPK regulates NADPH homeostasis to promote tumour cell survival during energy stress. Nature. 485:661–665. 2012. View Article : Google Scholar : PubMed/NCBI

18. 

Goodwin PJ, Ennis M, Pritchard KI, Trudeau ME, Koo J, Madarnas Y, Hartwick W, Hoffman B and Hood N: Fasting insulin and outcome in early-stage breast cancer: results of a prospective cohort study. J Clin Oncol. 20:42–51. 2002. View Article : Google Scholar : PubMed/NCBI

19. 

Wolk A, Mantzoros CS, Andersson SO, Bergström R, Signorello LB, Lagiou P, Adami HO and Trichopoulos D: Insulin-like growth factor 1 and prostate cancer risk: a population-based, case-control study. J Natl Cancer Inst. 90:911–915. 1998. View Article : Google Scholar : PubMed/NCBI

20. 

Allen NE, Key TJ, Appleby PN, Travis RC, Roddam AW, Rinaldi S, Egevad L, Rohrmann S, Linseisen J, Pischon T, Boeing H, Johnsen NF, Tjønneland A, Grønbaek H, Overvad K, Kiemeney L, Bueno-de-Mesquita HB, Bingham S, Khaw KT, Tumino R, Berrino F, Mattiello A, Sacerdote C, Palli D, Quirós JR, Ardanaz E, Navarro C, Larrañaga N, Gonzalez C, Sanchez M, Trichopoulou A, Travezea C, Trichopoulos D, Jenab M, Ferrari P, Riboli E and Kaaks R: Serum insulin-like growth factor (IGF)-I and IGF-binding protein-3 concentrations and prostate cancer risk: results from the European Prospective Investigation into Cancer and Nutrition. Cancer Epidemiol Biomarkers Prev. 16:1121–1127. 2007. View Article : Google Scholar : PubMed/NCBI

21. 

Renehan AG, Egger M, Minder C, O’Dwyer ST, Shalet SM and Zwahlen M: IGF-I, IGF binding protein-3 and breast cancer risk: comparison of 3 meta-analyses. Int J Cancer. 115:1006–1007; author reply, 1008, 2005.

22. 

Bowker SL, Majumdar SR, Veugelers P and Johnson JA: Increased cancer-related mortality for patients with type 2 diabetes who use sulfonylureas or insulin: response to Farooki and Schneider. Diabetes Care. 29:1990–1991. 2006. View Article : Google Scholar : PubMed/NCBI

23. 

Derr RL, Ye X, Islas MU, Desideri S, Saudek CD and Grossman SA: Association between hyperglycemia and survival in patients with newly diagnosed glioblastoma. J Clin Oncol. 27:1082–1086. 2009. View Article : Google Scholar : PubMed/NCBI

24. 

Zhou W, Mukherjee P, Kiebish MA, Markis WT, Mantis JG and Seyfried TN: The calorically restricted ketogenic diet, an effective alternative therapy for malignant brain cancer. Nutr Metab (Lond). 4:52007. View Article : Google Scholar : PubMed/NCBI

25. 

Marsh J, Mukherjee P and Seyfried TN: Akt-dependent proapoptotic effects of dietary restriction on late-stage management of a phosphatase and tensin homologue/tuberous sclerosis complex 2-deficient mouse astrocytoma. Clin Cancer Res. 14:7751–7762. 2008. View Article : Google Scholar

26. 

Stafford P, Abdelwahab MG, Kim DY, Preul MC, Rho JM and Scheck AC: The ketogenic diet reverses gene expression patterns and reduces reactive oxygen species levels when used as an adjuvant therapy for glioma. Nutr Metab (Lond). 7:74:2010

27. 

Kossoff EH, Rowley H, Sinha SR and Vining EPG: A prospective study of the modified Atkins diet for intractable epilepsy in adults. Epilepsia. 49:316–319. 2008. View Article : Google Scholar : PubMed/NCBI

28. 

Shai I, Schwarzfuchs D, Henkin Y, Shahar DR, Witkow S, Greenberg I, Golan R, Fraser D, Bolotin A, Vardi H, Tangi-Rozental O, Zuk-Ramot R, Sarusi B, Brickner D, Schwartz Z, Sheiner E, Marko R, Katorza E, Thiery J, Fiedler GM, Blüher M, Stumvoll M and Stampfer MJ: Weight loss with a low-carbohydrate, Mediterranean, or low-fat diet. N Engl J Med. 359:229–241. 2008. View Article : Google Scholar

29. 

Fraser DA, Thoen J, Bondhus S, Haugen M, Reseland JE, Djøseland O, Førre O and Kjeldsen-Kragh J: Reduction in serum leptin and IGF-1 but preserved T-lymphocyte numbers and activation after a ketogenic diet in rheumatoid arthritis patients. Clin Exp Rheumatol. 18:209–214. 2000.

30. 

Accurso A, Bernstein RK, Dahlqvist A, Draznin B, Feinman RD, Fine EJ, Gleed A, Jacobs DB, Larson G, Lustig RH, Manninen AH, McFarlane SI, Morrison K, Nielsen JV, Ravnskov U, Roth KS, Silvestre R, Sowers JR, Sundberg R, Volek JS, Westman EC, Wood RJ, Wortman J and Vernon MC: Dietary carbohydrate restriction in type 2 diabetes mellitus and metabolic syndrome: time for a critical appraisal. Nutr Metab (Lond). 5:92008. View Article : Google Scholar : PubMed/NCBI

31. 

Nebeling LC, Miraldi F, Shurin SB and Lerner E: Effects of a ketogenic diet on tumor metabolism and nutritional status in pediatric oncology patients: two case reports. J Am Coll Nutr. 14:202–208. 1995. View Article : Google Scholar : PubMed/NCBI

32. 

Schmidt M, Pfetzer N, Schwab M, Strauss I and Kämmerer U: Effects of a ketogenic diet on the quality of life in 16 patients with advanced cancer: A pilot trial. Nutr Metab (Lond). 8:542011. View Article : Google Scholar : PubMed/NCBI

33. 

Fine EJ, Segal-Isaacson CJ, Feinman RD, Herszkopf S, Romano MC, Tomuta N, Bontempo AF, Negassa A and Sparano JA: Targeting insulin inhibition as a metabolic therapy in advanced cancer: a pilot safety and feasibility dietary trial in 10 patients. Nutrition. 28:1028–1035. 2012. View Article : Google Scholar : PubMed/NCBI

34. 

Macdonald DR, Cascino TL, Schold SCJ and Cairncross JG: Response criteria for phase II studies of supratentorial malignant glioma. J Clin Oncol. 8:1277–1280. 1990.PubMed/NCBI

35. 

Mueller-Klieser W and Walenta S: Geographical mapping of metabolites in biological tissue with quantitative bioluminescence and single photon imaging. Histochem J. 25:407–420. 1993. View Article : Google Scholar : PubMed/NCBI

36. 

Maurer GD, Brucker DP, Bähr O, Harter PN, Hattingen E, Walenta S, Mueller-Klieser W, Steinbach JP and Rieger J: Differential utilization of ketone bodies by neurons and glioma cell lines: a rationale for ketogenic diet as experimental glioma therapy. BMC Cancer. 11:3152011. View Article : Google Scholar : PubMed/NCBI

37. 

Chang HT, Olson LK and Schwartz KA: Ketolytic and glycolytic enzymatic expression profiles in malignant gliomas: implication for ketogenic diet therapy. Nutr Metab (Lond). 10:472013. View Article : Google Scholar : PubMed/NCBI

38. 

Steinbach JP, Wolburg H, Klumpp A, Probst H and Weller M: Hypoxia-induced cell death in human malignant glioma cells: energy deprivation promotes decoupling of mitochondrial cytochrome c release from caspase processing and necrotic cell death. Cell Death Differ. 10:823–832. 2003. View Article : Google Scholar

39. 

Rieger J, Bähr O, Müller K, Franz K, Steinbach J and Hattingen E: Bevacizumab-induced diffusion-restricted lesions in malignant glioma patients. J Neurooncol. 99:49–56. 2010. View Article : Google Scholar : PubMed/NCBI

40. 

de Groot JF, Fuller G, Kumar AJ, Piao Y, Eterovic K, Ji Y and Conrad CA: Tumor invasion after treatment of glioblastoma with bevacizumab: radiographic and pathologic correlation in humans and mice. Neuro Oncol. 12:233–242. 2010.PubMed/NCBI

41. 

DeLay M, Jahangiri A, Carbonell WS, Hu Y, Tsao S, Tom MW, Paquette J, Tokuyasu TA and Aghi MK: Microarray analysis verifies two distinct phenotypes of glioblastomas resistant to antiangiogenic therapy. Clin Cancer Res. 18:2930–2942. 2012. View Article : Google Scholar : PubMed/NCBI

42. 

Hattingen E, Jurcoane A, Bähr O, Rieger J, Magerkurth J, Anti S, Steinbach JP and Pilatus U: Bevacizumab impairs oxidative energy metabolism and shows antitumoral effects in recurrent glioblastomas: a 31P/1H MRSI and quantitative magnetic resonance imaging study. Neuro Oncol. 13:1349–1363. 2011. View Article : Google Scholar

43. 

Tamura H, Hatazawa J, Toyoshima H, Shimosegawa E and Okudera T: Detection of deoxygenation-related signal change in acute ischemic stroke patients by T2*-weighted magnetic resonance imaging. Stroke. 33:967–971. 2002. View Article : Google Scholar : PubMed/NCBI

44. 

Seiler A, Jurcoane A, Magerkurth J, Wagner M, Hattingen E, Deichmann R, Neumann-Haefelin T and Singer OC: T2’ imaging within perfusion-restricted tissue in high-grade occlusive carotid disease. Stroke. 43:1831–1836. 2012.

45. 

Otto C, Kaemmerer U, Illert B, Muehling B, Pfetzer N, Wittig R, Voelker HU, Thiede A and Coy JF: Growth of human gastric cancer cells in nude mice is delayed by a ketogenic diet supplemented with omega-3 fatty acids and medium-chain triglycerides. BMC Cancer. 8:1222008. View Article : Google Scholar : PubMed/NCBI

46. 

Liu AG, Most MM, Brashear MM, Johnson WD, Cefalu WT and Greenway FL: Reducing the glycemic index or carbohydrate content of mixed meals reduces postprandial glycemia and insulinemia over the entire day but does not affect satiety. Diabetes Care. 35:1633–1637. 2012. View Article : Google Scholar : PubMed/NCBI

47. 

Mukherjee P, Mulrooney TJ, Marsh J, Blair D, Chiles TC and Seyfried TN: Differential effects of energy stress on AMPK phosphorylation and apoptosis in experimental brain tumor and normal brain. Mol Cancer. 7:372008. View Article : Google Scholar : PubMed/NCBI

48. 

Sarkar NH, Fernandes G, Telang NT, Kourides IA and Good RA: Low-calorie diet prevents the development of mammary tumors in C3H mice and reduces circulating prolactin level, murine mammary tumor virus expression, and proliferation of mammary alveolar cells. Proc Natl Acad Sci USA. 79:7758–7762. 1982. View Article : Google Scholar

49. 

Giovanella BC, Shepard RC, Stehlin JS, Venditti JM and Abbott BJ: Calorie restriction: effect on growth of human tumors heterotransplanted in nude mice. J Natl Cancer Inst. 68:249–257. 1982.PubMed/NCBI

50. 

Kalaany NY and Sabatini DM: Tumours with PI3K activation are resistant to dietary restriction. Nature. 458:725–731. 2009. View Article : Google Scholar : PubMed/NCBI

51. 

Lee C, Raffaghello L, Brandhorst S, Safdie FM, Bianchi G, Martin-Montalvo A, Pistoia V, Wei M, Hwang S, Merlino A, Emionite L, de Cabo R and Longo VD: Fasting cycles retard growth of tumors and sensitize a range of cancer cell types to chemotherapy. Sci Transl Med. 4:124ra272012.PubMed/NCBI

52. 

Abdelwahab MG, Fenton KE, Preul MC, Rho JM, Lynch A, Stafford P and Scheck AC: The ketogenic diet is an effective adjuvant to radiation therapy for the treatment of malignant glioma. PLoS ONE. 7:e361972012. View Article : Google Scholar : PubMed/NCBI

53. 

Zuccoli G, Marcello N, Pisanello A, Servadei F, Vaccaro S, Mukherjee P and Seyfried TN: Metabolic management of glioblastoma multiforme using standard therapy together with a restricted ketogenic diet: case report. Nutr Metab (Lond). 7:332010. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

June 2014
Volume 44 Issue 6

Print ISSN: 1019-6439
Online ISSN:1791-2423

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Rieger, J., Bähr, O., Maurer, G.D., Hattingen, E., Franz, K., Brucker, D. ... Steinbach, J.P. (2014). ERGO: A pilot study of ketogenic diet in recurrent glioblastoma Erratum in /ijo/45/6/2605 . International Journal of Oncology, 44, 1843-1852. https://doi.org/10.3892/ijo.2014.2382
MLA
Rieger, J., Bähr, O., Maurer, G. D., Hattingen, E., Franz, K., Brucker, D., Walenta, S., Kämmerer, U., Coy, J. F., Weller, M., Steinbach, J. P."ERGO: A pilot study of ketogenic diet in recurrent glioblastoma Erratum in /ijo/45/6/2605 ". International Journal of Oncology 44.6 (2014): 1843-1852.
Chicago
Rieger, J., Bähr, O., Maurer, G. D., Hattingen, E., Franz, K., Brucker, D., Walenta, S., Kämmerer, U., Coy, J. F., Weller, M., Steinbach, J. P."ERGO: A pilot study of ketogenic diet in recurrent glioblastoma Erratum in /ijo/45/6/2605 ". International Journal of Oncology 44, no. 6 (2014): 1843-1852. https://doi.org/10.3892/ijo.2014.2382