1.
|
Blackburn EH: Structure and function of
telomeres. Nature. 350:569–573. 1991. View
Article : Google Scholar : PubMed/NCBI
|
2.
|
Moyzis RK, Buckingham JM, Cram LS, et al:
A highly conserved repetitive DNA sequence, (TTAGGG)n, present at
the telomeres of human chromosomes. Proc Natl Acad Sci USA.
85:6622–6626. 1988. View Article : Google Scholar : PubMed/NCBI
|
3.
|
Griffith JD, Comeau L, Rosenfield S, et
al: Mammalian telomeres end in a large duplex loop. Cell.
97:503–514. 1999. View Article : Google Scholar : PubMed/NCBI
|
4.
|
Greider CW: Telomeres do D-loop-T-loop.
Cell. 97:419–422. 1999. View Article : Google Scholar : PubMed/NCBI
|
5.
|
De Lange T: Shelterin: the protein complex
that shapes and safeguards human telomeres. Genes Dev.
19:2100–2110. 2005.PubMed/NCBI
|
6.
|
Neidle S: Human telomeric G-quadruplex:
the current status of telomeric G-quadruplexes as therapeutic
targets in human cancer. FEBS J. 277:1118–1125. 2010. View Article : Google Scholar : PubMed/NCBI
|
7.
|
O’Sullivan RJ and Karlseder J: Telomeres:
protecting chromosomes against genome instability. Nat Rev Mol Cell
Biol. 11:171–181. 2010.PubMed/NCBI
|
8.
|
Palm W and de Lange T: How shelterin
protects mammalian telomeres. Annu Rev Genet. 42:301–334. 2008.
View Article : Google Scholar : PubMed/NCBI
|
9.
|
Smogorzewska A and de Lange T: Regulation
of telomerase by telomeric proteins. Annu Rev Biochem. 73:177–208.
2004. View Article : Google Scholar : PubMed/NCBI
|
10.
|
Greider CW and Blackburn EH: The telomere
terminal transferase of Tetrahymena is a ribonucleoprotein enzyme
with two kinds of primer specificity. Cell. 51:887–898. 1987.
View Article : Google Scholar : PubMed/NCBI
|
11.
|
Bryan TM and Reddel RR: Telomere dynamics
and telomerase activity in in vitro immortalised human cells. Eur J
Cancer. 33:767–773. 1997. View Article : Google Scholar : PubMed/NCBI
|
12.
|
Broccoli D, Young JW and de Lange T:
Telomerase activity in normal and malignant hematopoietic cells.
Proc Natl Acad Sci USA. 92:9082–9086. 1995. View Article : Google Scholar : PubMed/NCBI
|
13.
|
Ryan KM and Birnie GD: Cell-cycle
progression is not essential for c-Myc to block differentiation.
Oncogene. 14:2835–2843. 1997. View Article : Google Scholar : PubMed/NCBI
|
14.
|
Wu KJ, Grandori C, Amacker M, et al:
Direct activation of TERT transcription by c-MYC. Nat Genet.
21:220–224. 1999. View
Article : Google Scholar : PubMed/NCBI
|
15.
|
Greider CW and Blackburn EH:
Identification of a specific telomere terminal transferase activity
in Tetrahymena extracts. Cell. 43:405–413. 1985. View Article : Google Scholar : PubMed/NCBI
|
16.
|
Mason M, Schuller A and Skordalakes E:
Telomerase structure function. Curr Opin Struct Biol. 21:92–100.
2011. View Article : Google Scholar : PubMed/NCBI
|
17.
|
Feng J, Funk WD, Wang SS, et al: The RNA
component of human telomerase. Science. 269:1236–1241. 1995.
View Article : Google Scholar : PubMed/NCBI
|
18.
|
Morin GB: The human telomere terminal
transferase enzyme is a ribonucleoprotein that synthesizes TTAGGG
repeats. Cell. 59:521–529. 1989. View Article : Google Scholar : PubMed/NCBI
|
19.
|
Ly H: Genetic and environmental factors
influencing human diseases with telomere dysfunction. Int J Clin
Exp Med. 2:114–130. 2009.PubMed/NCBI
|
20.
|
Fu D and Collins K: Purification of human
telomerase complexes identifies factors involved in telomerase
biogenesis and telomere length regulation. Mol Cell. 28:773–785.
2007. View Article : Google Scholar : PubMed/NCBI
|
21.
|
Venteicher AS, Meng Z, Mason PJ, Veenstra
TD and Artandi SE: Identification of ATPases pontin and reptin as
telomerase components essential for holoenzyme assembly. Cell.
132:945–957. 2008. View Article : Google Scholar : PubMed/NCBI
|
22.
|
Zhong F, Savage SA, Shkreli M, et al:
Disruption of telomerase trafficking by TCAB1 mutation causes
dyskeratosis congenita. Genes Dev. 25:11–16. 2011. View Article : Google Scholar : PubMed/NCBI
|
23.
|
Kelleher C, Teixeira MT, Forstemann K and
Lingner J: Telomerase: biochemical considerations for enzyme and
substrate. Trends Biochem Sci. 27:572–579. 2002. View Article : Google Scholar : PubMed/NCBI
|
24.
|
De Boeck G, Forsyth RG, Praet M and
Hogendoorn PC: Telomere-associated proteins: cross-talk between
telomere maintenance and telomere-lengthening mechanisms. J Pathol.
217:327–344. 2009.PubMed/NCBI
|
25.
|
Forsyth NR, Wright WE and Shay JW:
Telomerase and differentiation in multicellular organisms: turn it
off, turn it on, and turn it off again. Differentiation.
69:188–197. 2002. View Article : Google Scholar : PubMed/NCBI
|
26.
|
Kilian A, Bowtell DD, Abud HE, et al:
Isolation of a candidate human telomerase catalytic subunit gene,
which reveals complex splicing patterns in different cell types.
Hum Mol Genet. 6:2011–2019. 1997. View Article : Google Scholar : PubMed/NCBI
|
27.
|
Ulaner GA, Hu JF, Vu TH, Giudice LC and
Hoffman AR: Telomerase activity in human development is regulated
by human telomerase reverse transcriptase (hTERT) transcription and
by alternate splicing of hTERT transcripts. Cancer Res.
58:4168–4172. 1998.
|
28.
|
Ulaner GA, Hu JF, Vu TH, Oruganti H,
Giudice LC and Hoffman AR: Regulation of telomerase by alternate
splicing of human telomerase reverse transcriptase (hTERT) in
normal and neoplastic ovary, endometrium and myometrium. Int J
Cancer. 85:330–335. 2000. View Article : Google Scholar : PubMed/NCBI
|
29.
|
Cong YS, Wright WE and Shay JW: Human
telomerase and its regulation. Microbiol Mol Biol Rev. 66:407–425.
2002. View Article : Google Scholar : PubMed/NCBI
|
30.
|
Sawyers CL, McLaughlin J, Goga A, Havlik M
and Witte O: The nuclear tyrosine kinase c-Abl negatively regulates
cell growth. Cell. 77:121–131. 1994. View Article : Google Scholar : PubMed/NCBI
|
31.
|
Kharbanda S, Kumar V, Dhar S, et al:
Regulation of the hTERT telomerase catalytic subunit by the c-Abl
tyrosine kinase. Curr Biol. 10:568–575. 2000. View Article : Google Scholar : PubMed/NCBI
|
32.
|
Tomlinson RL, Ziegler TD, Supakorndej T,
Terns RM and Terns MP: Cell cycle-regulated trafficking of human
telomerase to telomeres. Mol Biol Cell. 17:955–965. 2006.
View Article : Google Scholar : PubMed/NCBI
|
33.
|
Jady BE, Richard P, Bertrand E and Kiss T:
Cell cycle-dependent recruitment of telomerase RNA and Cajal bodies
to human telomeres. Mol Biol Cell. 17:944–954. 2006. View Article : Google Scholar : PubMed/NCBI
|
34.
|
Cioce M and Lamond AI: Cajal bodies: a
long history of discovery. Annu Rev Cell Dev Biol. 21:105–131.
2005. View Article : Google Scholar : PubMed/NCBI
|
35.
|
Wojtyla A, Gladych M and Rubis B: Human
telomerase activity regulation. Mol Biol Rep. 38:3339–3349. 2011.
View Article : Google Scholar
|
36.
|
Jady BE, Bertrand E and Kiss T: Human
telomerase RNA and box H/ACA scaRNAs share a common Cajal
body-specific localization signal. J Cell Biol. 164:647–652. 2004.
View Article : Google Scholar : PubMed/NCBI
|
37.
|
Lukowiak AA, Narayanan A, Li ZH, Terns RM
and Terns MP: The snoRNA domain of vertebrate telomerase RNA
functions to localize the RNA within the nucleus. RNA. 7:1833–1844.
2001.PubMed/NCBI
|
38.
|
Etheridge KT, Banik SS, Armbruster BN, et
al: The nucleolar localization domain of the catalytic subunit of
human telomerase. J Biol Chem. 277:24764–24770. 2002. View Article : Google Scholar : PubMed/NCBI
|
39.
|
Yang Y, Chen Y, Zhang C, Huang H and
Weissman SM: Nucleolar localization of hTERT protein is associated
with telomerase function. Exp Cell Res. 277:201–209. 2002.
View Article : Google Scholar : PubMed/NCBI
|
40.
|
Aisner DL, Wright WE and Shay JW:
Telomerase regulation: not just flipping the switch. Curr Opin
Genet Dev. 12:80–85. 2002. View Article : Google Scholar : PubMed/NCBI
|
41.
|
Collins K: Physiological assembly and
activity of human telomerase complexes. Mech Ageing Dev. 129:91–98.
2008. View Article : Google Scholar : PubMed/NCBI
|
42.
|
McEachern MJ, Krauskopf A and Blackburn
EH: Telomeres and their control. Annu Rev Genet. 34:331–358. 2000.
View Article : Google Scholar
|
43.
|
Taggart AK, Teng SC and Zakian VA: Est1p
as a cell cycle-regulated activator of telomere-bound telomerase.
Science. 297:1023–1026. 2002. View Article : Google Scholar : PubMed/NCBI
|
44.
|
Bachand F, Boisvert FM, Cote J, Richard S
and Autexier C: The product of the survival of motor neuron (SMN)
gene is a human telomerase-associated protein. Mol Biol Cell.
13:3192–3202. 2002. View Article : Google Scholar : PubMed/NCBI
|
45.
|
Tomlinson RL, Abreu EB, Ziegler T, et al:
Telomerase reverse transcriptase is required for the localization
of telomerase RNA to cajal bodies and telomeres in human cancer
cells. Mol Biol Cell. 19:3793–3800. 2008. View Article : Google Scholar : PubMed/NCBI
|
46.
|
Li H: Unveiling substrate RNA binding to
H/ACA RNPs: one side fits all. Curr Opin Struct Biol. 18:78–85.
2008. View Article : Google Scholar : PubMed/NCBI
|
47.
|
Venteicher AS, Abreu EB, Meng Z, et al: A
human telomerase holoenzyme protein required for Cajal body
localization and telomere synthesis. Science. 323:644–648. 2009.
View Article : Google Scholar : PubMed/NCBI
|
48.
|
Cheng X and Roberts RJ: AdoMet-dependent
methylation, DNA methyltransferases and base flipping. Nucleic
Acids Res. 29:3784–3795. 2001. View Article : Google Scholar : PubMed/NCBI
|
49.
|
Hamma T, Reichow SL, Varani G and
Ferre-D’Amare AR: The Cbf5-Nop10 complex is a molecular bracket
that organizes box H/ACA RNPs. Nat Struct Mol Biol. 12:1101–1107.
2005. View Article : Google Scholar : PubMed/NCBI
|
50.
|
Pogacic V, Dragon F and Filipowicz W:
Human H/ACA small nucleolar RNPs and telomerase share
evolutionarily conserved proteins NHP2 and NOP10. Mol Cell Biol.
20:9028–9040. 2000. View Article : Google Scholar : PubMed/NCBI
|
51.
|
Maiorano D, Brimage LJ, Leroy D and
Kearsey SE: Functional conservation and cell cycle localization of
the Nhp2 core component of H + ACA snoRNPs in fission and budding
yeasts. Exp Cell Res. 252:165–174. 1999.PubMed/NCBI
|
52.
|
Girard JP, Caizergues-Ferrer M and Lapeyre
B: The SpGAR1 gene of Schizosaccharomyces pombe encodes the
functional homologue of the snoRNP protein GAR1 of Saccharomyces
cerevisiae. Nucleic Acids Res. 21:2149–2155. 1993. View Article : Google Scholar : PubMed/NCBI
|
53.
|
Cossu F, Vulliamy TJ, Marrone A, Badiali
M, Cao A and Dokal I: A novel DKC1 mutation, severe combined
immunodeficiency (T+B-NK- SCID) and bone marrow transplantation in
an infant with Hoyeraal-Hreidarsson syndrome. Br J Haematol.
119:765–768. 2002.PubMed/NCBI
|
54.
|
Wong JM, Kyasa MJ, Hutchins L and Collins
K: Telomerase RNA deficiency in peripheral blood mononuclear cells
in X-linked dyskeratosis congenita. Hum Genet. 115:448–455.
2004.PubMed/NCBI
|
55.
|
Vulliamy T, Beswick R, Kirwan M, et al:
Mutations in the telomerase component NHP2 cause the premature
ageing syndrome dyskeratosis congenita. Proc Natl Acad Sci USA.
105:8073–8078. 2008. View Article : Google Scholar : PubMed/NCBI
|
56.
|
Walne AJ, Vulliamy T, Marrone A, et al:
Genetic heterogeneity in autosomal recessive dyskeratosis congenita
with one subtype due to mutations in the telomerase-associated
protein NOP10. Hum Mol Genet. 16:1619–1629. 2007. View Article : Google Scholar : PubMed/NCBI
|
57.
|
Heiss NS, Knight SW, Vulliamy TJ, et al:
X-linked dyskeratosis congenita is caused by mutations in a highly
conserved gene with putative nucleolar functions. Nat Genet.
19:32–38. 1998. View Article : Google Scholar : PubMed/NCBI
|
58.
|
Meier UT: The many facets of H/ACA
ribonucleoproteins. Chromosoma. 114:1–14. 2005. View Article : Google Scholar : PubMed/NCBI
|
59.
|
Parry EM, Alder JK, Lee SS, et al:
Decreased dyskerin levels as a mechanism of telomere shortening in
X-linked dyskeratosis congenita. J Med Genet. 48:327–333. 2011.
View Article : Google Scholar : PubMed/NCBI
|
60.
|
Tomlinson RL, Li J, Culp BR, Terns RM and
Terns MP: A Cajal body-independent pathway for telomerase
trafficking in mice. Exp Cell Res. 316:2797–2809. 2010. View Article : Google Scholar : PubMed/NCBI
|
61.
|
Lin J, Jin R, Zhang B, et al: Nucleolar
localization of TERT is unrelated to telomerase function in human
cells. J Cell Sci. 121:2169–2176. 2008. View Article : Google Scholar : PubMed/NCBI
|
62.
|
Wong JM, Kusdra L and Collins K:
Subnuclear shuttling of human telomerase induced by transformation
and DNA damage. Nat Cell Biol. 4:731–736. 2002. View Article : Google Scholar : PubMed/NCBI
|
63.
|
Gallardo F and Chartrand P: Telomerase
biogenesis: The long road before getting to the end. RNA Biol.
5:212–215. 2008. View Article : Google Scholar : PubMed/NCBI
|
64.
|
Collins K: The biogenesis and regulation
of telomerase holoenzymes. Nat Rev Mol Cell Biol. 7:484–494. 2006.
View Article : Google Scholar : PubMed/NCBI
|
65.
|
Grozdanov PN, Roy S, Kittur N and Meier
UT: SHQ1 is required prior to NAF1 for assembly of H/ACA small
nucleolar and telomerase RNPs. RNA. 15:1188–1197. 2009. View Article : Google Scholar : PubMed/NCBI
|
66.
|
Abreu E, Aritonovska E, Reichenbach P, et
al: TIN2-tethered TPP1 recruits human telomerase to telomeres in
vivo. Mol Cell Biol. 30:2971–2982. 2010. View Article : Google Scholar : PubMed/NCBI
|
67.
|
Cifuentes-Rojas C and Shippen DE:
Telomerase regulation. Mutat Res. 730:20–27. 2012. View Article : Google Scholar : PubMed/NCBI
|
68.
|
Collins K and Mitchell JR: Telomerase in
the human organism. Oncogene. 21:564–579. 2002. View Article : Google Scholar : PubMed/NCBI
|
69.
|
Venteicher AS and Artandi SE: TCAB1:
driving telomerase to Cajal bodies. Cell Cycle. 8:1329–1331. 2009.
View Article : Google Scholar : PubMed/NCBI
|
70.
|
Wang F, Podell ER, Zaug AJ, et al: The
POT1-TPP1 telomere complex is a telomerase processivity factor.
Nature. 445:506–510. 2007. View Article : Google Scholar : PubMed/NCBI
|
71.
|
Xin H, Liu D, Wan M, et al: TPP1 is a
homologue of ciliate TEBP-beta and interacts with POT1 to recruit
telomerase. Nature. 445:559–562. 2007. View Article : Google Scholar : PubMed/NCBI
|
72.
|
Shore D and Bianchi A: Telomere length
regulation: coupling DNA end processing to feedback regulation of
telomerase. EMBO J. 28:2309–2322. 2009. View Article : Google Scholar : PubMed/NCBI
|
73.
|
Smogorzewska A, van Steensel B, Bianchi A,
et al: Control of human telomere length by TRF1 and TRF2. Mol Cell
Biol. 20:1659–1668. 2000. View Article : Google Scholar : PubMed/NCBI
|
74.
|
Ancelin K, Brunori M, Bauwens S, et al:
Targeting assay to study the cis functions of human telomeric
proteins: evidence for inhibition of telomerase by TRF1 and for
activation of telomere degradation by TRF2. Mol Cell Biol.
22:3474–3487. 2002. View Article : Google Scholar : PubMed/NCBI
|
75.
|
Roth A, Harley CB and Baerlocher GM:
Imetelstat (GRN163L)--telomerase-based cancer therapy. Recent
Results Cancer Res. 184:221–234. 2010. View Article : Google Scholar : PubMed/NCBI
|
76.
|
Chakraborty S, Ghosh U, Bhattacharyya NP,
Bhattacharya RK and Roy M: Inhibition of telomerase activity and
induction of apoptosis by curcumin in K-562 cells. Mutat Res.
596:81–90. 2006. View Article : Google Scholar : PubMed/NCBI
|
77.
|
Mukherjee Nee Chakraborty S, Ghosh U,
Bhattacharyya NP, Bhattacharya RK, Dey S and Roy M:
Curcumin-induced apoptosis in human leukemia cell HL-60 is
associated with inhibition of telomerase activity. Mol Cell
Biochem. 297:31–39. 2007.PubMed/NCBI
|
78.
|
Ramachandran C, Fonseca HB, Jhabvala P,
Escalon EA and Melnick SJ: Curcumin inhibits telomerase activity
through human telomerase reverse transcritpase in MCF-7 breast
cancer cell line. Cancer Lett. 184:1–6. 2002. View Article : Google Scholar : PubMed/NCBI
|
79.
|
Lee JH and Chung IK: Curcumin inhibits
nuclear localization of telomerase by dissociating the Hsp90
co-chaperone p23 from hTERT. Cancer Lett. 290:76–86. 2010.
View Article : Google Scholar : PubMed/NCBI
|
80.
|
Moon DO, Kang SH, Kim KC, Kim MO, Choi YH
and Kim GY: Sulforaphane decreases viability and telomerase
activity in hepatocellular carcinoma Hep3B cells through the
reactive oxygen species-dependent pathway. Cancer Lett.
295:260–266. 2010. View Article : Google Scholar
|