MMP-2 suppression abrogates irradiation-induced microtubule formation in endothelial cells by inhibiting αvβ3-mediated SDF-1/CXCR4 signaling

  • Authors:
    • Dilip Rajasekhar Maddirela
    • Divya Kesanakurti
    • Meena Gujrati
    • Jasti S. Rao
  • View Affiliations

  • Published online on: February 4, 2013     https://doi.org/10.3892/ijo.2013.1806
  • Pages: 1279-1288
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

The majority of glioblastoma multiforme (GBM) tumors recur after radiation (IR) treatment due to increased angiogenesis and IR-induced signaling events in endothelial cells (ECs) that are involved in tumor neovascularization; however, these signaling events have yet to be well characterized. In the present study, we observed that IR (8 Gy) significantly elevated MMP-2 expression and gelatinolytic activity in 4910 and 5310 human GBM xenograft cells. In addition, ECs treated with tumor-conditioned media (CM) obtained from IR-treated 4910 and 5310 cells showed increased microtubule formation. In view of this finding, we investigated the possible anti-angiogenic effects of MMP-2 downregulation using siRNA (pM.si) in IR-treated cells. We also determined the effect of CM obtained from mock, pSV (scrambled vector) and pMMP-2.si on endothelial cell growth and vessel formation. pM.si-CM-treated ECs showed inhibited IR-CM-induced SDF-1, CXCR4, phospho-PI3K and phospho-AKT and αvβ3 expression levels. In vitro angiogenesis assays also showed that the pM.si+IR decreased IR-induced vessel formation in ECs. Immunofluorescence and immunoprecipitation experiments indicated the abrogation of αvβ3-SDF-1 interaction in pM.si-CM-treated ECs when compared to mock or pSV treatments. External supplementation of either rhMMP-2 or rhSDF-1 counteracted and noticeably reversed pM.si-inhibited SDF-1, CXCR4, phospho-PI3K and phospho-AKT expression levels and angiogenesis, thereby confirming the role of MMP-2 in the regulation of αvβ3-mediated SDF-1/CXCR4 signaling. In addition to the in vitro results, the in vivo mouse dorsal air sac model also showed reduced angiogenesis after injection of pM.si alone or in combination with IR-treated xenograft cells. In contrast, injection of mock or pSV-treated cells resulted in robust formation of characteristic neovascularization. Collectively, our data demonstrate the role of MMP-2 in the regulation of SDF-1/CXCR4 signaling-mediated angiogenesis in ECs and show the anti-angiogenic efficacy of combining MMP-2 downregulation and IR when treating patients with GBM in the future.
View Figures
View References

Related Articles

Journal Cover

April 2013
Volume 42 Issue 4

Print ISSN: 1019-6439
Online ISSN:1791-2423

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Maddirela, D.R., Kesanakurti, D., Gujrati, M., & Rao, J.S. (2013). MMP-2 suppression abrogates irradiation-induced microtubule formation in endothelial cells by inhibiting αvβ3-mediated SDF-1/CXCR4 signaling. International Journal of Oncology, 42, 1279-1288. https://doi.org/10.3892/ijo.2013.1806
MLA
Maddirela, D. R., Kesanakurti, D., Gujrati, M., Rao, J. S."MMP-2 suppression abrogates irradiation-induced microtubule formation in endothelial cells by inhibiting αvβ3-mediated SDF-1/CXCR4 signaling". International Journal of Oncology 42.4 (2013): 1279-1288.
Chicago
Maddirela, D. R., Kesanakurti, D., Gujrati, M., Rao, J. S."MMP-2 suppression abrogates irradiation-induced microtubule formation in endothelial cells by inhibiting αvβ3-mediated SDF-1/CXCR4 signaling". International Journal of Oncology 42, no. 4 (2013): 1279-1288. https://doi.org/10.3892/ijo.2013.1806