Circulating microRNAs: New biomarkers in diagnosis, prognosis and treatment of cancer (Review)

  • Authors:
    • Alessandro Allegra
    • Andrea Alonci
    • Salvatore Campo
    • Giuseppa Penna
    • Annamaria Petrungaro
    • Demetrio Gerace
    • Caterina Musolino
  • View Affiliations

  • Published online on: October 1, 2012     https://doi.org/10.3892/ijo.2012.1647
  • Pages: 1897-1912
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

MicroRNAs (miRNAs) are small non-coding, endogenous, single-stranded RNAs. MiRNAs have been implicated in different areas such as the immune response, neural development, DNA repair, apoptosis, oxidative stress response and cancer. However, while the majority of miRNAs are found intracellularly, a significant number of miRNAs have been observed outside of cells, including various body fluids. Circulating miRNAs function as ‘extracellular communication RNAs’ that play an important role in cell proliferation and differentiation. MiRNA regulation is essential to many cellular processes, and escape from this regulatory network seems to be a common characteristic of several disease processes and malignant transformation. The interest in circulating miRNAs reflects in fact their central role in regulation of gene expression and the implication of miRNA-specific aberrant expression in the pathogenesis of cancer, cardiac, metabolic, neurologic, immune-related diseases as well as others. In our review we aimed to summarize the data related to the action of cellular miRNAs on the onset of various diseases, thus bringing together some of the latest information available on the role of circulating miRNAs. Additionally, the role of circulating miRNAs could be particularly relevant in the context of neoplastic diseases. At least 79 miRNAs have been reported as plasma or serum miRNA biomarkers of solid and hematologic tumors. Circulating miRNA profiling could improve the diagnosis of cancer, and could predict outcome for cancer patients, while the profiling of alterations in circulating miRNA that may signal a predisposition to cancer, could also be a therapeutic target in these patients.

References

1. 

Setoyama T, Ling H, Natsugoe S and Calin GA: Non-coding RNAs for medical practice in oncology. Keio J Med. 60:106–113. 2011. View Article : Google Scholar : PubMed/NCBI

2. 

Carninci P, Kasukawa T, Katayama S, et al: The transcriptional landscape of the mammalian genome. Science. 309:1559–1563. 2005. View Article : Google Scholar : PubMed/NCBI

3. 

Kapranov P, Drenkow J, Cheng J, Long J, Helt G, Dike S and Gingeras TR: Examples of the complex architecture of the human transcriptome revealed by RACE and high-density tiling arrays. Genome Res. 15:987–997. 2005. View Article : Google Scholar : PubMed/NCBI

4. 

Mercer TR, Dinger ME and Mattick JS: Long non-coding RNAs: insights into functions. Nat Rev Genet. 10:155–159. 2009. View Article : Google Scholar : PubMed/NCBI

5. 

Taft RJ, Pang KC, Mercer TR, Dinger M and Mattick JS: Non-coding RNAs: regulators of disease. J Pathol. 220:126–139. 2010. View Article : Google Scholar : PubMed/NCBI

6. 

Gupta RA, Shah N, Wang KC, et al: Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer meta-stasis. Nature. 464:1071–1076. 2010. View Article : Google Scholar : PubMed/NCBI

7. 

Friedman RC, Farh KK, Burge CB and Bartel DP: Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 19:92–105. 2009. View Article : Google Scholar : PubMed/NCBI

8. 

Lee RC, Feinbaum RL and Ambros V: The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 75:843–854. 1993. View Article : Google Scholar : PubMed/NCBI

9. 

Bartel DP and Chen CZ: Micromanagers of gene expression: the potentially widespread influence of metazoan microRNAs. Nat Rev Genet. 5:396–400. 2004. View Article : Google Scholar : PubMed/NCBI

10. 

Zhao T, Li G, Mi S, Li S, Hannon GJ, Wang XJ and Qi Y: A complex system of small RNAs in the unicellular green alga Chlamydomonas reinhardtii. Genes Dev. 21:1190–1203. 2007. View Article : Google Scholar

11. 

Lee Y, Kim M, Han J, Yeom KH, Lee S, Baek SH and Kim VN: MicroRNA genes are transcribed by RNA polymerase II. EMBO J. 23:4051–4060. 2004. View Article : Google Scholar : PubMed/NCBI

12. 

Borchert GM, Lanier W and Davidson BL: RNA polymerase III transcribes human microRNAs. Nat Struct Mol Biol. 13:1097–1101. 2006. View Article : Google Scholar : PubMed/NCBI

13. 

Hu HY, Yan Z, Xu Y, et al: Sequence features associated with microRNA strand selection in humans and flies. BMC Genomics. 10:4132009. View Article : Google Scholar : PubMed/NCBI

14. 

Fabian MR, Sonenberg N and Filipowicz W: Regulation of mRNA translation and stability by microRNAs. Annu Rev Biochem. 79:351–379. 2010. View Article : Google Scholar : PubMed/NCBI

15. 

Fiorucci G, Chiantore MV, Mangino G, Percario ZA, Affabris E and Romeo G: Cancer regulator microRNA: potential relevance in diagnosis, prognosis and treatment of cancer. Curr Med Chem. 19:461–474. 2012. View Article : Google Scholar : PubMed/NCBI

16. 

Zen K and Zhang CY: Circulating microRNAs: a novel class of biomarkers to diagnose and monitor human cancers. Med Res Rev. 32:326–348. 2012. View Article : Google Scholar : PubMed/NCBI

17. 

Weber JA, Baxter DH, Zhang S, et al: The microRNA spectrum in 12 body fluids. Clin Chem. 56:1733–1741. 2010. View Article : Google Scholar : PubMed/NCBI

18. 

Wang K, Zhang S, Weber J, Baxter D and Galas DJ: Export of microRNAs and microRNA-protective protein by mammalian cells. Nucleic Acids Res. 38:7248–7259. 2010. View Article : Google Scholar : PubMed/NCBI

19. 

Zubakov D, Boersma AW, Choi Y, van Kuijk PF, Wiemer EA and Kayser M: MicroRNA markers for forensic body fluid identification obtained from microarray screening and quantitative RT-PCR confirmation. Int J Legal Med. 124:217–226. 2010. View Article : Google Scholar : PubMed/NCBI

20. 

Hanson EK, Lubenow H and Ballantyne J: Identification of forensically relevant body fluids using a panel of differentially expressed microRNAs. Anal Biochem. 387:303–314. 2009. View Article : Google Scholar : PubMed/NCBI

21. 

Weickmann JL and Glitz DG: Human ribonucleases. Quantitation of pancreatic-like enzymes in serum, urine, and organ preparations. J Biol Chem. 257:8705–8710. 1982.PubMed/NCBI

22. 

Gibbings DJ, Ciaudo C, Erhardt M and Voinnet O: Multivesicular bodies associate with components of miRNA effector complexes and modulate miRNA activity. Nat Cell Biol. 11:1143–1149. 2009. View Article : Google Scholar : PubMed/NCBI

23. 

Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ and Lotvall JO: Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 9:654–659. 2007. View Article : Google Scholar : PubMed/NCBI

24. 

Iguchi H, Kosaka N and Ochiya T: Secretory microRNAs as a versatile communication tool. Commun Integr Biol. 3:478–481. 2010. View Article : Google Scholar : PubMed/NCBI

25. 

Camussi G, Deregibus MC, Bruno S, Cantaluppi V and Biancone L: Exosomes/microvesicles as a mechanism of cell-to-cell communication. Kidney Int. 78:838–848. 2010. View Article : Google Scholar : PubMed/NCBI

26. 

Muralidharan-Chari V, Clancy JW, Sedgwick A and D’Souza-Schorey C: Microvesicles: mediators of extracellular communication during cancer progression. J Cell Sci. 123:1603–1611. 2010. View Article : Google Scholar : PubMed/NCBI

27. 

Cortez MA, Bueso-Ramos C, Ferdin J, Lopez-Berestein G, Sood AK and Calin GA: MicroRNAs in body fluids - the mix of hormones and biomarkers. Nat Rev Clin Oncol. 8:467–477. 2011. View Article : Google Scholar : PubMed/NCBI

28. 

Etheridge A, Lee I, Hood L, Galas D and Wang K: Extracellular microRNA: a new source of biomarkers. Mutat Res. 717:85–90. 2011.PubMed/NCBI

29. 

Skog J, Wurdinger T, van Rijn S, et al: Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol. 10:1470–1476. 2008. View Article : Google Scholar : PubMed/NCBI

30. 

Hunter MP, Ismail N, Zhang X, et al: Detection of microRNA expression in human peripheral blood microvesicles. PLoS One. 3:e36942008. View Article : Google Scholar : PubMed/NCBI

31. 

Michael A, Bajracharya SD, Yuen PS, Zhou H, Star RA, Illei GG and Alevizos I: Exosomes from human saliva as a source of microRNA biomarkers. Oral Dis. 16:34–38. 2010.PubMed/NCBI

32. 

Dimov I, Velickovic L and Stefanovic V: Urinary exosomes. Sci World J. 9:1107–1118. 2009. View Article : Google Scholar

33. 

Blanchard N, Lankar D, Faure F, Regnault A, Dumont C, Raposo G and Hivroz C: TCR activation of human T cells induces the production of exosomes bearing the TCR/CD3/zeta complex. J Immunol. 168:3235–3241. 2002. View Article : Google Scholar : PubMed/NCBI

34. 

Raposo G, Nijman HW, Stoorvogel W, Liejendekker R, Harding CV, Melief CJ and Geuze HJ: B lymphocytes secrete antigen-presenting vesicles. J Exp Med. 183:1161–1172. 1996. View Article : Google Scholar : PubMed/NCBI

35. 

Thery C, Regnault A, Garin J, et al: Molecular characterization of dendritic cell-derived exosomes. Selective accumulation of the heat shock protein hsc73. J Cell Biol. 147:599–610. 1999. View Article : Google Scholar : PubMed/NCBI

36. 

Mears R, Craven RA, Hanrahan S, et al: Proteomic analysis of melanoma-derived exosomes by two-dimensional polyacrylamide gel electrophoresis and mass spectrometry. Proteomics. 4:4019–4031. 2004. View Article : Google Scholar : PubMed/NCBI

37. 

O’Neill HC and Quah BJ: Exosomes secreted by bacterially infected macrophages are proinflammatory. Sci Signal. 1:82008.PubMed/NCBI

38. 

Taylor DD and Gercel-Taylor C: MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecol Oncol. 110:13–21. 2008. View Article : Google Scholar : PubMed/NCBI

39. 

Denzer K, Kleijmeer MJ, Heijnen HF, Stoorvogel W and Geuze HJ: Exosome: from internal vesicle of the multivesicular body to intercellular signaling device. J Cell Sci. 113:3365–3374. 2000.PubMed/NCBI

40. 

Huber V, Filipazzi P, Iero M, Fais S and Rivoltini L: More insights into the immunosuppressive potential of tumor exosomes. J Transl Med. 6:632008. View Article : Google Scholar : PubMed/NCBI

41. 

Xiang X, Poliakov A, Liu C, et al: Induction of myeloid-derived suppressor cells by tumor exosomes. Int J Cancer. 124:2621–2633. 2009. View Article : Google Scholar : PubMed/NCBI

42. 

Vallhov H, Gutzeit C, Johansson SM, et al: Exosomes containing glycoprotein 350 released by EBV-transformed B cells selectively target B cells through CD21 and block EBV infection in vitro. J Immunol. 186:73–82. 2011. View Article : Google Scholar : PubMed/NCBI

43. 

Shen J, Todd NW, Zhang H, et al: Plasma microRNAs as potential biomarkers for non-small-cell lung cancer. Lab Invest. 91:579–587. 2011. View Article : Google Scholar : PubMed/NCBI

44. 

Mitchell PS, Parkin RK, Kroh EM, et al: Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci USA. 105:10513–10518. 2008. View Article : Google Scholar : PubMed/NCBI

45. 

Gilad S, Meiri E, Yogev Y, et al: Serum microRNAs are promising novel biomarkers. PLoS One. 3:e31482008. View Article : Google Scholar : PubMed/NCBI

46. 

Kosaka N, Iguchi H, Yoshioka Y, Takeshita F, Matsuki Y and Ochiya T: Secretory mechanisms and intercellular transfer of microRNAs in living cells. J Biol Chem. 285:17442–17452. 2010. View Article : Google Scholar : PubMed/NCBI

47. 

Turchinovich A, Weiz L, Langheinz A and Burwinkel B: Characterization of extracellular circulating microRNA. Nucleic Acids Res. 39:7223–7233. 2011. View Article : Google Scholar : PubMed/NCBI

48. 

Chen X, Ba Y, Ma L, et al: Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res. 18:997–1006. 2008. View Article : Google Scholar : PubMed/NCBI

49. 

Li J, Smyth P, Flavin R, et al: Comparison of miRNA expression patterns using total RNA extracted from matched samples of formalin-fixed paraffin-embedded (FFPE) cells and snap-frozen cells. BMC Biotechnol. 7:362007. View Article : Google Scholar : PubMed/NCBI

50. 

Xie Y, Todd NW, Liu Z, Zhan M and Fang H: Altered miRNA expression in sputum for diagnosis of non-small cell lung cancer. Lung Cancer. 67:170–176. 2010. View Article : Google Scholar : PubMed/NCBI

51. 

Tsujiura M, Ichikawa D, Komatsu S, et al: Circulating microRNAs in plasma of patients with gastric cancers. Br J Cancer. 102:1174–1179. 2010. View Article : Google Scholar : PubMed/NCBI

52. 

Huang Z, Huang D, Ni S, Peng Z, Sheng W and Du X: Plasma microRNAs are promising novel biomarkers for early detection of colorectal cancer. Int J Cancer. 127:118–126. 2010. View Article : Google Scholar : PubMed/NCBI

53. 

Xi Y, Nakajima G, Gavin E, et al: Systematic analysis of microRNA expression of RNA extracted from fresh frozen and formalin-fixed paraffin-embedded samples. RNA. 13:1668–1674. 2007. View Article : Google Scholar : PubMed/NCBI

54. 

Schöler N, Langer C and Kuchenbauer F: Circulating microRNAs as biomarkers - true blood? Genome Med. 3:722011.PubMed/NCBI

55. 

Wang G, Tam LS, Li EK, et al: Serum and urinary free microRNA level in patients with systemic lupus erythematosus. Lupus. 20:493–500. 2011. View Article : Google Scholar : PubMed/NCBI

56. 

Shaoqing Y, Ruxin Z, Guojun L, Zhiqiang Y, Hua H, Shudong Y and Jie Z: Microarray analysis of differentially expressed microRNAs in allergic rhinitis. Am J Rhinol Allergy. 25:242–246. 2011. View Article : Google Scholar : PubMed/NCBI

57. 

Zahm AM, Thayu M, Hand NJ, Horner A, Leonard MB and Friedman JR: Circulating microRNA is a biomarker of pediatric Crohn disease. J Pediatr Gastroenterol Nutr. 53:26–33. 2011. View Article : Google Scholar : PubMed/NCBI

58. 

Wu F, Guo NJ, Tian H, et al: Peripheral blood microRNAs distinguish active ulcerative colitis and Crohn’s disease. Inflamm Bowel Dis. 17:241–250. 2011.PubMed/NCBI

59. 

Zampetaki A, Kiechl S, Drozdov I, et al: Plasma microRNA profiling reveals loss of endothelial miR-126 and other microRNAs in type 2 diabetes. Circ Res. 107:810–817. 2010. View Article : Google Scholar : PubMed/NCBI

60. 

Karolina DS, Armugam A, Tavintharan S, Wong MTK, Lim SC, Sum CF and Jeyase K: MicroRNA 144 impairs insulin signaling by inhibiting the expression of insulin receptor substrate 1 in type 2 diabetes mellitus. PLos One. 6:e228392011. View Article : Google Scholar : PubMed/NCBI

61. 

Cogswell JP, Ward J, Taylor IA, et al: Identification of miRNA changes in Alzheimer’s disease brain and CSF yields putative biomarkers and insights into disease pathways. J Alzheimers Dis. 14:27–41. 2008.

62. 

Geekiyanage H, Jicha GA, Nelson PT and Chan C: Blood serum miRNA: non-invasive biomarkers for Alzheimer’s disease. Exp Neurol. 235:491–496. 2012.

63. 

Beveridge NJ and Cairns MJ: MicroRNA dysregulation in schizophrenia. Neurobiol Dis. 46:263–271. 2012. View Article : Google Scholar

64. 

Mizuno H, Nakamura A, Aoki Y, et al: Identification of muscle-specific microRNAs in serum of muscular dystrophy animal models: promising novel blood-based markers for muscular dystrophy. PLoS One. 6:e183882011. View Article : Google Scholar : PubMed/NCBI

65. 

Laterza OF, Lim L, Garrett-Engele PW, et al: Plasma microRNAs as sensitive and specific biomarkers of tissue injury. Clin Chem. 55:1977–1983. 2009. View Article : Google Scholar : PubMed/NCBI

66. 

Xu J, Zhao J, Evan G, Xiao C, Cheng Y and Xiao J: Circulating microRNAs: novel biomarkers for cardiovascular diseases. J Mol Med (Berl). 90:865–875. 2012. View Article : Google Scholar : PubMed/NCBI

67. 

Li H, Guo L, Wu Q, Lu J, Ge Q and Lu Z: A comprehensive survey of maternal plasma miRNAs expression profiles using high-throughput sequencing. Clin Chim Acta. 413:568–576. 2012. View Article : Google Scholar : PubMed/NCBI

68. 

Chim SS, Shing TK, Hung EC, et al: Detection and characterization of placental microRNAs in maternal plasma. Clin Chem. 54:482–490. 2008. View Article : Google Scholar : PubMed/NCBI

69. 

Gunel T, Zeybek YG, Akçakaya P, Kalelioğlu I, Benian A, Ermis H and Aydinli K: Serum microRNA expression in pregnancies with preeclampsia. Genet Mol Res. 10:4034–4040. 2011. View Article : Google Scholar : PubMed/NCBI

70. 

Calin GA, Sevignani C, Dumitru CD, et al: Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci USA. 101:2999–3004. 2004. View Article : Google Scholar : PubMed/NCBI

71. 

Asaga S, Kuo C, Nguyen T, Terpenning M, Giuliano AE and Hoon DS: Direct serum assay for microRNA-21 concentrations in early and advanced breast cancer. Clin Chem. 57:84–91. 2011. View Article : Google Scholar : PubMed/NCBI

72. 

Cho WC: MicroRNAs in cancer-from research to therapy. Biochim Biophys Acta. 1805:209–217. 2010.PubMed/NCBI

73. 

Cho WC: MicroRNAs: potential biomarkers for cancer diagnosis, prognosis and targets for therapy. Int J Biochem Cell Biol. 42:1273–1281. 2010. View Article : Google Scholar : PubMed/NCBI

74. 

Lu J, Getz G, Miska EA, et al: MicroRNA expression profiles classify human cancers. Nature. 435:834–838. 2005. View Article : Google Scholar : PubMed/NCBI

75. 

Chan JA, Krichevsky AM and Kosik KS: MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res. 65:6029–6033. 2005. View Article : Google Scholar : PubMed/NCBI

76. 

Iorio MV, Ferracin M, Liu CG, et al: MicroRNA gene expression deregulation in human breast cancer. Cancer Res. 65:7065–7070. 2005. View Article : Google Scholar : PubMed/NCBI

77. 

Markou A, Tsaroucha EG, Kaklamanis L, et al: Prognostic value of mature microRNA-21 and microRNA-205 overexpression in nonsmall cell lung cancer by quantitative real-time RT-PCR. Clin Chem. 54:1696–1704. 2008. View Article : Google Scholar : PubMed/NCBI

78. 

Schetter AJ, Leung SY, Sohn JJ, et al: MicroRNA expression profiles associated with prognosis and therapeutic outcome in colon adenocarcinoma. JAMA. 299:425–436. 2008. View Article : Google Scholar : PubMed/NCBI

79. 

Huang YS, Dai Y, Yu XF, et al: Microarray analysis of microRNA expression in hepatocellular carcinoma and non-tumorous tissues without viral hepatitis. J Gastroenterol Hepatol. 23:87–94. 2008. View Article : Google Scholar : PubMed/NCBI

80. 

Ladeiro Y, Couchy G, Balabaud C, et al: MicroRNA profiling in hepatocellular tumors is associated with clinical features and oncogene/tumor suppressor gene mutations. Hepatology. 47:1955–1963. 2008. View Article : Google Scholar : PubMed/NCBI

81. 

Bandrés E, Cubedo E, Agirre X, et al: Identification by real-time PCR of 13 mature microRNAs differentially expressed in colorectal cancer and non-tumoral tissues. Mol Cancer. 5:292006.PubMed/NCBI

82. 

Slaby O, Svoboda M, Fabian P, et al: Altered expression of miR-21, miR-31, miR-143 and miR-145 is related to clinicopathologic features of colorectal cancer. Oncology. 72:397–402. 2007. View Article : Google Scholar : PubMed/NCBI

83. 

Motoyama K, Inoube H, Takatsuno Y, et al: Over- and under-expressed microRNAs in human colorectal cancer. Int J Oncol. 34:1069–1075. 2009.PubMed/NCBI

84. 

Wang CJ, Zhou ZG, Wang L, et al: Clinicopathological significance of microRNA-31, -143 and -145 expression in colorectal cancer. Dis Markers. 26:27–34. 2009. View Article : Google Scholar : PubMed/NCBI

85. 

Yan LIX, Huang XF, Shao Q, et al: MicroRNA miR-21 overexpression in human breast cancer is associated with advanced clinical stage, lymph node metastasis and patient poor prognosis. RNA. 14:2348–2360. 2008. View Article : Google Scholar : PubMed/NCBI

86. 

Valastyan S, Reinhardt F, Benaich N, et al: A pleiotropically acting microRNA, miR-31, inhibits breast cancer metastasis. Cell. 137:1032–1046. 2009. View Article : Google Scholar : PubMed/NCBI

87. 

Guo J, Miao Y, Xiao B, et al: Differential expression of microRNA species in human gastric cancer versus non-tumorous tissues. J Gastroenterol Hepatol. 24:652–657. 2009. View Article : Google Scholar : PubMed/NCBI

88. 

Veerla S, Lindgren D, Kvist A, et al: MiRNA expression in urothelial carcinomas: important roles of miR-10a, miR-222, miR-125b, miR-7 and miR-452 for tumor stage and metastasis, and frequent homozygous losses of miR-31. Int J Cancer. 124:2236–2242. 2009. View Article : Google Scholar : PubMed/NCBI

89. 

Rosenfeld N, Aharonov R, Meiri E, et al: MicroRNAs accurately identify cancer tissue origin. Nat Biotechnol. 26:462–469. 2008. View Article : Google Scholar : PubMed/NCBI

90. 

He JF, Luo YM, Wan XH and Jiang D: Biogenesis of miRNA-195 and its role in biogenesis, the cell cycle, and apoptosis. J Biochem Mol Toxicol. 25:404–408. 2011. View Article : Google Scholar : PubMed/NCBI

91. 

Donzelli S, Fontemaggi G, Fazi F, et al: MicroRNA-128-2 targets the transcriptional repressor E2F5 enhancing mutant p53 gain of function. Cell Death Differ. 19:1038–1048. 2012. View Article : Google Scholar : PubMed/NCBI

92. 

Yin R, Bao W, Xing Y, Xi T and Gou S: MiR-19b-1 inhibits angiogenesis by blocking cell cycle progression of endothelial cells. Biochem Biophys Res Commun. 417:771–776. 2012. View Article : Google Scholar : PubMed/NCBI

93. 

Enkelmann A, Heinzelmann J, von Eggeling F, et al: Specific protein and miRNA patterns characterise tumour-associated fibroblasts in bladder cancer. J Cancer Res Clin Oncol. 137:751–759. 2011. View Article : Google Scholar : PubMed/NCBI

94. 

Schaar DG, Medina DJ, Moore DF, Strair RK and Ting YI: miR-320 targets transferrin receptor 1 (CD71) and inhibits cell proliferation. Exp Hematol. 37:245–255. 2009. View Article : Google Scholar : PubMed/NCBI

95. 

Ichimi T, Enokida H, Okuno Y, et al: Identification of novel microRNA targets based on microRNA signatures in bladder cancer. Int J Cancer. 125:345–352. 2009. View Article : Google Scholar : PubMed/NCBI

96. 

Chiyomaru T, Enokida H, Tatarano S, et al: miR-145 and miR-133a function as tumour suppressors and directly regulate FSCN1 expression in bladder cancer. Br J Cancer. 102:883–891. 2010. View Article : Google Scholar : PubMed/NCBI

97. 

Ostenfeld MS, Bramsen JB, Lamy P, et al: miR-145 induces caspase-dependent and -independent cell death in urothelial cancer cell lines with targeting of an expression signature present in Ta bladder tumors. Oncogene. 29:1073–1084. 2010. View Article : Google Scholar : PubMed/NCBI

98. 

Aprelikova O, Yu X, Palla J, et al: The role of miR-31 and its target gene SATB2 in cancer-associated fibroblasts. Cell Cycle. 9:4387–4398. 2010. View Article : Google Scholar : PubMed/NCBI

99. 

Rana TM: Illuminating the silence: understanding the structure and function of small RNAs. Nat Rev Mol Cell Biol. 8:23–36. 2007. View Article : Google Scholar : PubMed/NCBI

100. 

Bullock MD, Sayan AE, Packham GK and Mirnezami AH: microRNAs: critical regulators of epithelial to mesenchymal (EMT) and mesenchymal to epithelial transition (MET) in cancer progression. Biol Cell. 104:3–12. 2012. View Article : Google Scholar : PubMed/NCBI

101. 

Avila-Moreno F, Urrea F and Ortiz-Quintero B: MicroRNAs in diagnosis and prognosis in lung cancer. Rev Invest Clin. 63:516–535. 2011.PubMed/NCBI

102. 

Segura MF, Belitskaya-Lévy I, Rose AE, et al: Melanoma microRNA signature predicts post-recurrence survival. Clin Cancer Res. 16:1577–1586. 2010. View Article : Google Scholar : PubMed/NCBI

103. 

Yu SL, Chen HY, Chang GC, et al: MicroRNA signature predicts survival and relapse in lung cancer. Cancer Cell. 13:48–57. 2008. View Article : Google Scholar : PubMed/NCBI

104. 

Zhou N and Mo YY: Roles of microRNAs in cancer stem cells. Front Biosci. 4:810–818. 2012. View Article : Google Scholar : PubMed/NCBI

105. 

Ho AS, Huang X, Cao H, et al: Circulating miR-210 as a novel hypoxia marker in pancreatic cancer. Transl Oncol. 3:109–113. 2010. View Article : Google Scholar : PubMed/NCBI

106. 

Resnick KE, Alder H, Hagan JP, et al: The detection of differentially expressed microRNAs from the serum of ovarian cancer patients using a novel real-time PCR platform. Gynecol Oncol. 112:55–59. 2009. View Article : Google Scholar : PubMed/NCBI

107. 

Ng EK, Chong WW, Jin H, et al: Differential expression of microRNAs in plasma of patients with colorectal cancer: a potential marker for colorectal cancer screening. Gut. 58:1375–1381. 2009. View Article : Google Scholar : PubMed/NCBI

108. 

Wentz-Hunter KK and Potashkin JA: The role of miRNAs as key regulators in the neoplastic microenvironment. Mol Biol Int. 2011:8398722011.PubMed/NCBI

109. 

Kosaka N, Iguchi H and Ochiya T: Circulating microRNA in body fluid: a new potential biomarker for cancer diagnosis and prognosis. Cancer Sci. 101:2087–2092. 2010. View Article : Google Scholar : PubMed/NCBI

110. 

Roth C, Rack B, Muller V, Janni W, Pantel K and Schwarzenbach H: Circulating microRNAs as blood-based markers for patients with primary and metastatic breast cancer. Breast Cancer Res. 12:R902010. View Article : Google Scholar : PubMed/NCBI

111. 

Yu L, Todd NW, Xing L, Xie Y, Zhang H, Liu Z and Jiang F: Early detection of lung adenocarcinoma in sputum by a panel of microRNA markers. Int J Cancer. 127:2870–2878. 2010. View Article : Google Scholar : PubMed/NCBI

112. 

Xing L, Todd NW, Yu L, Fang H and Jiang F: Early detection of squamous cell lung cancer in sputum by a panel of microRNA markers. Mod Pathol. 8:1157–1164. 2010. View Article : Google Scholar : PubMed/NCBI

113. 

Pezzolesi MG, Platzer P, Waite KA and Eng C: Differential expression of PTEN-targeting microRNAs miR-19a and miR-21 in Cowden syndrome. Am J Hum Genet. 82:1141–1149. 2008. View Article : Google Scholar : PubMed/NCBI

114. 

Zhu S, Si ML, Wu H and Mo YY: MicroRNA-21 targets the tumor suppressor gene tropomyosin 1 (TPM1). J Biol Chem. 282:14328–14336. 2007. View Article : Google Scholar : PubMed/NCBI

115. 

Du Rieu MC, Torrisani J, Selves J, et al: MicroRNA-21 is induced early in pancreatic ductal adenocarcinoma precursor lesions. Clin Chem. 56:603–612. 2010.PubMed/NCBI

116. 

Zhang HL, Yang LF, Zhu Y, et al: Serum miRNA-21: elevated levels in patients with metastatic hormone-refractory prostate cancer and potential predictive factor for the efficacy of docetaxel-based chemotherapy. Prostate. 71:326–331. 2011. View Article : Google Scholar

117. 

Shen J, Liu Z, Todd NW, et al: Diagnosis of lung cancer in individuals with solitary pulmonary nodules by plasma microRNA biomarkers. BMC Cancer. 11:3742011. View Article : Google Scholar : PubMed/NCBI

118. 

Wei J, Gao W, Zhu CJ, Liu YQ, Mei Z, Cheng T and Shu YQ: Identification of plasma micro-RNA-21 as a biomarker for early detection and chemosensitivity of non-small cell lung cancer. Chin J Cancer. 30:407–414. 2011. View Article : Google Scholar : PubMed/NCBI

119. 

Oh HK, Tan AL, Das K, et al: Genomic loss of miR-486 regulates tumor progression and the OLFM4 anti-apoptotic factor in gastric cancer. Clin Cancer Res. 17:2657–2667. 2011. View Article : Google Scholar : PubMed/NCBI

120. 

Mees ST, Mardin WA, Sielker S, et al: Involvement of CD40 targeting miR-224 and miR-486 on the progression of pancreatic ductal adenocarcinomas. Ann Surg Oncol. 16:2339–2350. 2009. View Article : Google Scholar : PubMed/NCBI

121. 

Bansal A, Lee IH, Hong X, et al: Feasibility of microRNAs as biomarkers for Barrett’s esophagus progression: a pilot cross-sectional, phase 2 biomarker study. Am J Gastroenterol. 106:1055–1063. 2011.PubMed/NCBI

122. 

Huang X, Ding L, Bennewith KL, et al: Hypoxia-inducible mir-210 regulates normoxic gene expression involved in tumor initiation. Mol Cell. 35:856–867. 2009. View Article : Google Scholar : PubMed/NCBI

123. 

Roth C, Kasimir-Bauer S, Pantel K and Schwarzenbach H: Screening for circulating nucleic acids and caspase activity in the peripheral blood as potential diagnostic tools in lung cancer. Mol Oncol. 5:281–291. 2011. View Article : Google Scholar : PubMed/NCBI

124. 

Zheng D, Haddadin S, Wang Y, Gu LQ, Perry MC, Freter CE and Wang MX: Plasma microRNAs as novel biomarkers for early detection of lung cancer. Int J Clin Exp Pathol. 4:575–586. 2011.PubMed/NCBI

125. 

Heegaard NH, Schetter AJ, Welsh JA, Yoneda M, Bowman ED and Harris CC: Circulating microRNA expression profiles in early stage non-small cell lung cancer. Int J Cancer. 130:1378–1386. 2012. View Article : Google Scholar : PubMed/NCBI

126. 

Bianchi F, Nicassio F, Marzi M, et al: A serum circulating miRNA diagnostic test to identify asymptomatic high-risk individuals with early stage lung cancer. EMBO Mol Med. 3:495–503. 2011. View Article : Google Scholar : PubMed/NCBI

127. 

Bockmeyer CL, Christgen M, Müller M, et al: MicroRNA profiles of healthy basal and luminal mammary epithelial cells are distinct and reflected in different breast cancer subtypes. Breast Cancer Res Treat. 130:735–745. 2011. View Article : Google Scholar : PubMed/NCBI

128. 

Blenkiron C, Goldstein LD, Thorne NP, et al: MicroRNA expression profiling of human breast cancer identifies new markers of tumor subtype. Genome Biol. 8:2142007. View Article : Google Scholar : PubMed/NCBI

129. 

Adams BD, Guttilla IK and White BA: Involvement of microRNAs in breast cancer. Semin Reprod Med. 26:522–536. 2008. View Article : Google Scholar : PubMed/NCBI

130. 

Enerly E, Steinfeld I, Kleivi K, et al: miRNA-mRNA integrated analysis reveals roles for miRNAs in primary breast tumors. PLoS One. 6:e169152011. View Article : Google Scholar : PubMed/NCBI

131. 

Yu F, Yao H, Zhu P, et al: let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell. 131:1109–1123. 2007. View Article : Google Scholar : PubMed/NCBI

132. 

Tavazoie SF, Alarcón C, Oskarsson T, et al: Endogenous human microRNAs that suppress breast cancer metastasis. Nature. 451:147–152. 2008. View Article : Google Scholar : PubMed/NCBI

133. 

Hurteau GJ, Carlson JA, Spivack SD and Brock GJ: Overexpression of the microRNA hsa-miR-200c leads to reduced expression of transcription factor 8 and increased expression of E-cadherin. Cancer Res. 67:7972–7976. 2007. View Article : Google Scholar : PubMed/NCBI

134. 

Bertos NR and Park M: Breast cancer - one term, many entities? J Clin Invest. 121:3789–3796. 2011. View Article : Google Scholar : PubMed/NCBI

135. 

Heneghan HM, Miller N and Kerin MJ: Circulating microRNAs: promising breast cancer. Breast Cancer Res. 13:4022011. View Article : Google Scholar : PubMed/NCBI

136. 

Ratajczak J, Wysoczynski M, Hayek F, Janowska-Wieczorek A and Ratajczak MZ: Membrane-derived microvesicles: important and underappreciated mediators of cell-to-cell communication. Leukemia. 20:1487–1495. 2006. View Article : Google Scholar : PubMed/NCBI

137. 

Ohshima K, Inoue K, Fujiwara A, et al: Let-7 microRNA family is selectively secreted into the extracellular environment via exosomes in a metastatic gastric cancer cell line. PLoS One. 5:e132472010. View Article : Google Scholar : PubMed/NCBI

138. 

Gourzones C, Gelin A, Bombik I, et al: Extra-cellular release and blood diffusion of BART viral micro-RNAs produced by EBV-infected nasopharyngeal carcinoma cells. Virol J. 7:2712010. View Article : Google Scholar : PubMed/NCBI

139. 

Luo SS, Ishibashi O, Ishikawa G, et al: Human villous trophoblasts express and secrete placenta-specific microRNAs into maternal circulation via exosomes. Biol Reprod. 81:717–729. 2009. View Article : Google Scholar : PubMed/NCBI

140. 

Yang M, Chen J, Su F, et al: Microvesicles secreted by macrophages shuttle invasion-potentiating microRNAs into breast cancer cells. Mol Cancer. 10:1172011. View Article : Google Scholar : PubMed/NCBI

141. 

Sarasin-Filipowicz M, Krol J, Markiewicz I, Heim MH and Filipowicz W: Decreased levels of microRNA miR-122 in individuals with hepatitis C responding poorly to interferon therapy. Nat Med. 15:31–33. 2009. View Article : Google Scholar : PubMed/NCBI

142. 

Morita K, Taketomi A, Shirabe K, et al: Clinical significance and potential of hepatic microRNA-122 expression in hepatitis C. Liver Int. 31:474–484. 2011. View Article : Google Scholar : PubMed/NCBI

143. 

Wang K, Zhang S, Marzolf B, et al: Circulating microRNAs, potential biomarkers for drug-induced liver injury. Proc Natl Acad Sci USA. 106:4402–4407. 2009. View Article : Google Scholar : PubMed/NCBI

144. 

Zhang Y, Jia Y, Zheng R, et al: Plasma microRNA-122 as a biomarker for viral-, alcohol-, and chemical-related hepatic diseases. Clin Chem. 56:1830–1838. 2010. View Article : Google Scholar : PubMed/NCBI

145. 

Xu J, Wu C, Che X, et al: Circulating microRNAs, miR-21, miR-122, and miR-223, in patients with hepatocellular carcinoma or chronic hepatitis. Mol Carcinog. 50:136–142. 2011. View Article : Google Scholar : PubMed/NCBI

146. 

Tomimaru Y, Eguchi H, Nagano H, et al: Circulating microRNA-21 as a novel biomarker for hepatocellular carcinoma. J Hepatol. 56:167–175. 2012. View Article : Google Scholar : PubMed/NCBI

147. 

Cermelli S, Ruggieri A, Marrero JA, Ioannou GN and Beretta L: Circulating microRNAs in patients with chronic hepatitis C and non-alcoholic fatty liver disease. PLoS One. 6:e239372011. View Article : Google Scholar : PubMed/NCBI

148. 

Qi P, Cheng SQ, Wang H, Li N, Chen YF and Gao CF: Serum microRNAs as biomarkers for hepatocellular carcinoma in Chinese patients with chronic hepatitis B virus infection. PLoS One. 6:e284862011. View Article : Google Scholar : PubMed/NCBI

149. 

Ikeda Y, Tanji E, Makino N, Kawata S and Furukawa T: MicroRNAs associated with mitogen-activated protein kinase in human pancreatic cancer. Mol Cancer Res. 10:259–269. 2012. View Article : Google Scholar : PubMed/NCBI

150. 

Habbe N, Koorstra J, Mendell J, et al: MicroRNA miR-155 is a biomarker of early pancreatic neoplasia. Cancer Biol Ther. 8:340–346. 2009. View Article : Google Scholar : PubMed/NCBI

151. 

La Conti JL, Shivapurkar N, Preet A, et al: Tissue and serum microRNAs in the KrasG12D transgenic animal model and in patients with pancreatic cancer. PLoS One. 6:e206872011.PubMed/NCBI

152. 

Morimura R, Komatsu S, Ichikawa D, et al: Novel diagnostic value of circulating miR-18a in plasma of patients with pancreatic cancer. Br J Cancer. 105:1733–1740. 2011. View Article : Google Scholar : PubMed/NCBI

153. 

Liu R, Chen X, Du Y, et al: Serum microRNA expression profile as a biomarker in the diagnosis and prognosis of pancreatic cancer. Clin Chem. 58:610–618. 2012. View Article : Google Scholar : PubMed/NCBI

154. 

Hwang JH, Voortman J, Giovannetti E, et al: Identification of microRNA-21 as a biomarker for chemoresistance and clinical outcome following adjuvant therapy in resectable pancreatic cancer. PLoS One. 5:e106302010. View Article : Google Scholar : PubMed/NCBI

155. 

Shigehara K, Yokomuro S, Ishibashi O, et al: Real-time PCR-based analysis of the human bile microRNAome identifies miR-9 as a potential diagnostic biomarker for biliary tract cancer. PLoS One. 6:e235842011. View Article : Google Scholar : PubMed/NCBI

156. 

Komatsu S, Ichikawa D, Takeshita H, et al: Circulating microRNAs in plasma of patients with oesophageal squamous cell carcinoma. Br J Cancer. 105:104–111. 2011. View Article : Google Scholar : PubMed/NCBI

157. 

Chiang Y, Zhou X, Wang Z, et al: Expression levels of microRNA-192 and -215 in gastric carcinoma. Pathol Oncol Res. 18:585–591. 2012. View Article : Google Scholar : PubMed/NCBI

158. 

Wang J, Zhang J, Wu J, et al: MicroRNA-610 inhibits the migration and invasion of gastric cancer cells by suppressing the expression of vasodilator-stimulated phosphoprotein. Eur J Cancer. [Epub ahead of print]. 2011.PubMed/NCBI

159. 

Liu H, Zhu L, Liu B, et al: Genome-wide microRNA profiles identify miR-378 as a serum biomarker for early detection of gastric cancer. Cancer Lett. 316:196–203. 2012. View Article : Google Scholar : PubMed/NCBI

160. 

Wu J, Wu G, Lv L, et al: MicroRNA-34a inhibits migration and invasion of colon cancer cells via targeting to Fra-1. Carcinogenesis. 33:519–528. 2012. View Article : Google Scholar : PubMed/NCBI

161. 

Nugent M, Miller N and Kerin MJ: MicroRNAs in colorectal cancer: function, dysregulation and potential as novel biomarkers. Eur J Surg Oncol. 37:649–654. 2011. View Article : Google Scholar : PubMed/NCBI

162. 

Cheng H, Zhang L, Cogdell DE, et al: Circulating plasma MiR-141 is a novel biomarker for metastatic colon cancer and predicts poor prognosis. PLoS One. 6:e177452011. View Article : Google Scholar : PubMed/NCBI

163. 

Wulfken LM, Moritz R, Ohlmann C, et al: MicroRNAs in renal cell carcinoma: diagnostic implications of serum miR-1233 levels. PLoS One. 6:e257872011. View Article : Google Scholar : PubMed/NCBI

164. 

Mahn R, Heukamp LC, Rogenhofer S, von Ruecker A, Müller SC and Ellinger J: Circulating microRNAs (miRNA) in serum of patients with prostate cancer. Urology. 77:9–16. 2011. View Article : Google Scholar : PubMed/NCBI

165. 

Lodes MJ, Caraballo M, Suciu D, Munro S, Kumar A and Anderson B: Detection of cancer with serum miRNAs on an oligonucleotide microarray. PLoS One. 4:e62292009. View Article : Google Scholar : PubMed/NCBI

166. 

Brase JC, Johannes M, Schlomm T, et al: Circulating miRNAs are correlated with tumor progression in prostate cancer. Int J Cancer. 128:608–616. 2010. View Article : Google Scholar : PubMed/NCBI

167. 

Moltzahn F, Olshen AB, Baehner L, et al: Microfluidic-based multiplex qRT-PCR identifies diagnostic and prognostic microRNA signatures in the sera of prostate cancer patients. Cancer Res. 71:550–560. 2011. View Article : Google Scholar : PubMed/NCBI

168. 

Wach S, Nolte E, Szczyrba J, et al: MicroRNA profiles of prostate carcinoma detected by multiplatform microRNA screening. Int J Cancer. 130:611–621. 2012. View Article : Google Scholar : PubMed/NCBI

169. 

Kuwabara Y, Ono K, Horie T, et al: Increased microRNA-1 and microRNA-133a levels in serum of patients with cardiovascular disease indicate the existence of myocardial damage. Circ Cardiovasc Genet. 4:446–454. 2011. View Article : Google Scholar : PubMed/NCBI

170. 

Hanke M, Hoefig K, Merz H, et al: A robust methodology to study urine microRNA as tumor marker: microRNA-126 and microRNA-182 are related to urinary bladder cancer. Urol Oncol. 28:655–661. 2010. View Article : Google Scholar : PubMed/NCBI

171. 

Selth LA, Townley S, Gillis JL, et al: Discovery of circulating microRNAs associated with human prostate cancer using a mouse model of disease. Int J Cancer. 131:652–661. 2012. View Article : Google Scholar : PubMed/NCBI

172. 

Gonzales JC, Fink LM, Goodman OB Jr, Symanowski JT, Vogelzang NJ and Ward DC: Comparison of circulating MicroRNA 141 to circulating tumor cells, lactate dehydrogenase, and prostate-specific antigen for determining treatment response in patients with metastatic prostate cancer. Clin Genitourin Cancer. 9:39–45. 2011. View Article : Google Scholar

173. 

Lin SC, Liu CJ, Lin JA, et al: miR-24 up-regulation in oral carcinoma: positive association from clinical and in vitro analysis. Oral Oncol. 46:204–208. 2010. View Article : Google Scholar : PubMed/NCBI

174. 

Park NJ, Zhou H, Elashoff D, Henson BS, Kastratovic DA, Abemayor E and Wong DT: Salivary microRNA: discovery, characterization, and clinical utility for oral cancer detection. Clin Cancer Res. 15:5473–5477. 2009. View Article : Google Scholar : PubMed/NCBI

175. 

Lawrie CH, Gal S, Dunlop HM, et al: Detection of elevated levels of tumour-associated microRNAs in serum of patients with diffuse large B-cell lymphoma. Br J Haematol. 141:672–675. 2008. View Article : Google Scholar : PubMed/NCBI

176. 

Cheng AM, Byrom MW, Shelton J and Ford LP: Antisense inhibition of human miRNAs and indications for an involvement of miRNA in cell growth and apoptosis. Nucleic Acids Res. 33:1290–1297. 2005. View Article : Google Scholar : PubMed/NCBI

177. 

Si ML, Zhu S, Wu H, Lu Z, Wu F and Mo YY: miR-21-mediated tumor growth. Oncogene. 26:2799–2803. 2006.

178. 

Stamatopoulos B, Meuleman N, Haibe-Kains B, et al: MicroRNA29c and microRNA-223 downregulation has in vivo significance in chronic lymphocytic leukemia and improves disease risk stratification. Blood. 113:5237–5245. 2009. View Article : Google Scholar : PubMed/NCBI

179. 

Moussay E, Wang K, Cho JH, et al: MicroRNA as biomarkers and regulators in B-cell chronic lymphocytic leukemia. Proc Natl Acad Sci USA. 108:6573–6578. 2011. View Article : Google Scholar : PubMed/NCBI

180. 

Fulci V, Chiaretti S, Goldoni M, et al: Quantitative technologies establish a novel microRNA profile of chronic lymphocytic leukemia. Blood. 109:4944–4951. 2007. View Article : Google Scholar : PubMed/NCBI

181. 

Huang J and Mo YY: Role of microRNAs in leukemia stem cells. Front Biosci (Schol Ed). 4:799–809. 2012. View Article : Google Scholar : PubMed/NCBI

182. 

Zhu YD, Wang L, Sun C, et al: Distinctive microRNA signature is associated with the diagnosis and prognosis of acute leukemia. Med Oncol. [Epub ahead of print]. 2011.

183. 

Tanaka M, Oikawa K, Takanashi M, et al: Down-regulation of miR-92 in human plasma is a novel marker for acute leukemia patients. PLoS One. 4:e55322009. View Article : Google Scholar : PubMed/NCBI

184. 

Aqeilan RI, Calin GA and Croce CM: miR-15a and miR-16-1 in cancer: discovery, function and future perspectives. Cell Death Differ. 17:215–220. 2010. View Article : Google Scholar : PubMed/NCBI

185. 

Cammarata G, Augugliaro L, Salemi D, et al: Differential expression of specific microRNA and their targets in acute myeloid leukemia. Am J Hematol. 85:331–339. 2010.PubMed/NCBI

186. 

Tsang WP and Kwok TT: Let-7a microRNA suppresses therapeutics-induced cancer cell death by targeting caspase-3. Apoptosis. 13:1215–1222. 2008. View Article : Google Scholar : PubMed/NCBI

187. 

Calin GA, Dumitru CD, Shimizu M, et al: Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA. 99:15524–15529. 2002. View Article : Google Scholar : PubMed/NCBI

188. 

Pons A, Nomdedeu B, Navarro A, et al: Hematopoiesis-related microRNA expression in myelodysplastic syndromes. Leuk Lymphoma. 50:1854–1859. 2009. View Article : Google Scholar : PubMed/NCBI

189. 

Zuo Z, Calin GA, De Paula HM, et al: Circulating microRNAs let-7a and miR-16 predict progression-free survival and overall survival in patients with myelodysplastic syndrome. Blood. 118:413–415. 2011. View Article : Google Scholar : PubMed/NCBI

190. 

Huang JJ, Yu J, Li JY, Liu YT and Zhong RQ: Circulating microRNA expression is associated with genetic subtype and survival of multiple myeloma. Med Oncol. [Epub ahead of print]. 2012.PubMed/NCBI

191. 

Yu DC, Li QG, Ding LXW and Ding YT: Circulating microRNAs: potential biomarkers for cancer. Int J Mol Sci. 12:2055–2063. 2011. View Article : Google Scholar : PubMed/NCBI

192. 

Duttagupta R, Jiang R, Gollub J, Getts RC and Jones KE: Impact of cellular miRNAs on circulating miRNA biomarker signatures. PLoS One. 6:e207692011. View Article : Google Scholar : PubMed/NCBI

193. 

Pritchard CC, Kroh E, Wood B, et al: Blood cell origin of circulating microRNAs: a cautionary note for cancer biomarker studies. Cancer Prev Res (Phila). 5:492–497. 2012. View Article : Google Scholar : PubMed/NCBI

194. 

McDonald JS, Milosevic D, Reddi HV, Grebe SK and Algeciras-Schimnich A: Analysis of circulating microRNA: preanalytical and analytical challenges. Clin Chem. 57:833–840. 2011. View Article : Google Scholar : PubMed/NCBI

195. 

Reid G, Kirschner MB and van Zandwijk N: Circulating microRNAs: association with disease and potential use as biomarkers. Crit Rev Oncol Hematol. 80:193–208. 2011. View Article : Google Scholar : PubMed/NCBI

196. 

Wang Y, Zheng D, Tan Q, Wang MX and Gu LQ: Nanopore-based detection of circulating microRNAs in lung cancer patients. Nat Nanotechnol. 6:668–674. 2011. View Article : Google Scholar : PubMed/NCBI

197. 

Spiegel JC, Lorenzen JM and Thum T: Role of microRNAs in immunity and organ transplantation. Expert Rev Mol Med. 13:e372011. View Article : Google Scholar : PubMed/NCBI

198. 

Benner SA: Extracellular ‘communicator RNA’. FEBS Lett. 233:225–228. 1988.

199. 

D’Alessandra Y, Pompilio G and Capogrossi MC: MicroRNAs and myocardial infarction. Curr Opin Cardiol. 27:228–235. 2012.

200. 

Ha TY: The role of microRNAs in regulatory T cells and in the immune response. Immune Netw. 11:11–41. 2011. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

December 2012
Volume 41 Issue 6

Print ISSN: 1019-6439
Online ISSN:1791-2423

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Allegra, A., Alonci, A., Campo, S., Penna, G., Petrungaro, A., Gerace, D., & Musolino, C. (2012). Circulating microRNAs: New biomarkers in diagnosis, prognosis and treatment of cancer (Review). International Journal of Oncology, 41, 1897-1912. https://doi.org/10.3892/ijo.2012.1647
MLA
Allegra, A., Alonci, A., Campo, S., Penna, G., Petrungaro, A., Gerace, D., Musolino, C."Circulating microRNAs: New biomarkers in diagnosis, prognosis and treatment of cancer (Review)". International Journal of Oncology 41.6 (2012): 1897-1912.
Chicago
Allegra, A., Alonci, A., Campo, S., Penna, G., Petrungaro, A., Gerace, D., Musolino, C."Circulating microRNAs: New biomarkers in diagnosis, prognosis and treatment of cancer (Review)". International Journal of Oncology 41, no. 6 (2012): 1897-1912. https://doi.org/10.3892/ijo.2012.1647