Alteration of the Wnt/GSK3β/β‑catenin signalling pathway by rapamycin ameliorates pathology in an Alzheimer's disease model

  • Authors:
    • Jingfei Chen
    • Zhimin Long
    • Yanzhen Li
    • Min Luo
    • Shifang Luo
    • Guiqiong He
  • View Affiliations

  • Published online on: May 15, 2019     https://doi.org/10.3892/ijmm.2019.4198
  • Pages: 313-323
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

The abnormal activation of glycogen synthase kinase 3β (GSK3β) is one of the mechanisms involved in the pathogenesis of Alzheimer's disease (AD), which results in amyloid β‑peptide (Aβ) plaque overproduction, Tau hyperphosphorylation and neuronal loss. A number of studies have reported that the activation of the mammalian target of rapamycin (mTOR) contributes to the generation and deposition of Aβ, as well as to the formation of neurofibrillary tangles (NFTs) by inhibiting autophagy. GSK3β is also involved in the mTOR signalling pathway. However, whether the inhibition of the activation of mTOR via the regulation of the function of GSK3β affects the pathology of AD remains unclear. In this study, we intraperitoneally injected amyloid precursor protein (APP)/presenilin‑1 (PS1) transgenic mice with rapamycin, a known activator of autophagy that inhibits mTOR. Our results revealed that rapamycin treatment decreased senile plaque deposition by reducing APP generation, and downregulating β‑ and γ‑secretase activity. Rapamycin also increased Aβ clearance by promoting autophagy and reduced Tau hyperphosphorylation by upregulating the levels of insulin‑degrading enzyme. Additionally, rapamycin markedly promoted the proliferation of differentiated SH‑SY5Y cells stably transfected with the APPswe gene and prevented neuronal loss in the brains of mice in a model of AD. Moreover, rapamycin induced autophagy and promoted autolysosome degradation. In this study, we provide evidence that rapamycin inhibits GSK3β activation and elevates β‑catenin expression by improving the Wnt3a expression levels, which facilitates the amelioration of AD pathology. On the whole, our findings indicate that rapamycin inhibits the activation of mTOR and alters the Wnt/GSK3β/β‑catenin signalling pathway; thus, it may serve as a therapeutic target in the treatment of AD.

References

1 

Hardy J and Selkoe DJ: The amyloid hypothesis of Alzheimer's disease: Progress and problems on the road to therapeutics. Science. 297:353–356. 2002. View Article : Google Scholar : PubMed/NCBI

2 

Mucke L: Neuroscience: Alzheimer's disease. Nature. 461:895–897. 2009. View Article : Google Scholar : PubMed/NCBI

3 

Näslund J, Haroutunian V, Mohs R, Davis KL, Davies P, Greengard P and Buxbaum JD: Correlation between elevated levels of amyloid beta-peptide in the brain and cognitive decline. JAMA. 283:1571–1577. 2000. View Article : Google Scholar : PubMed/NCBI

4 

Karran E, Mercken M and De Strooper B: The amyloid cascade hypothesis for Alzheimer's disease: An appraisal for the development of therapeutics. Nat Rev Drug Discov. 10:698–712. 2011. View Article : Google Scholar : PubMed/NCBI

5 

Sun X, Sato S, Murayama O, Murayama M, Park JM, Yamaguchi H and Takashima A: Lithium inhibits amyloid secretion in COS7 cells transfected with amyloid precursor protein C100. Neurosci Lett. 321:61–64. 2002. View Article : Google Scholar : PubMed/NCBI

6 

Li B, Ryder J, Su Y, Zhou Y, Liu F and Ni B: FRAT1 peptide decreases Abeta production in swAPP(751) cells. FEBS Lett. 553:347–350. 2003. View Article : Google Scholar : PubMed/NCBI

7 

Su Y, Ryder J, Li B, Wu X, Fox N, Solenberg P, Brune K, Paul S, Zhou Y, Liu F and Ni B: Lithium, a common drug for bipolar disorder treatment, regulates amyloid-beta precursor protein processing. Biochemistry. 43:6899–6908. 2004. View Article : Google Scholar : PubMed/NCBI

8 

Ly PT, Wu Y, Zou H, Wang R, Zhou W, Kinoshita A, Zhang M, Yang Y, Cai F, Woodgett J and Song W: Inhibition of GSK3β-mediated BACE1 expression reduces Alzheimer-associated phenotypes. J Clin Invest. 123:224–235. 2013. View Article : Google Scholar

9 

Brownlees J, Irving NG, Brion JP, Gibb BJ, Wagner U, Woodgett J and Miller CC: Tau phosphorylation in transgenic mice expressing glycogen synthase kinase-3beta transgenes. Neuroreport. 8:3251–3255. 1997. View Article : Google Scholar : PubMed/NCBI

10 

Lucas JJ, Hernández F, Gómez-Ramos P, Morán MA, Hen R and Avila J: Decreased nuclear beta-catenin, tau hyperphosphorylation and neurodegeneration in GSK-3beta conditional transgenic mice. EMBO J. 20:27–39. 2001. View Article : Google Scholar : PubMed/NCBI

11 

Engel T, Hernández F, Avila J and Lucas JJ: Full reversal of Alzheimer's disease-like phenotype in a mouse model with conditional overexpression of glycogen synthase kinase-3. J Neurosci. 26:5083–5090. 2006. View Article : Google Scholar : PubMed/NCBI

12 

Ghanevati M and Miller CA: Phospho-beta-catenin accumulation in Alzheimer's disease and in aggresomes attributable to proteasome dysfunction. J Mol Neurosci. 25:79–94. 2005. View Article : Google Scholar : PubMed/NCBI

13 

Ferrari De GV, Papassotiropoulos A, Biechele T, Wavrant De-Vrieze F, Avila ME, Major MB, Myers A, Sáez K, Henríquez JP, Zhao A, et al: Common genetic variation within the low-density lipoprotein receptor-related protein 6 and late-onset Alzheimer's disease. Proc Natl Acad Sci USA. 104:9434–9439. 2007. View Article : Google Scholar

14 

Paccalin M, Pain-Barc S, Pluchon C, Paul C, Besson MN, Carret-Rebillat AS, Rioux-Bilan A, Gil R and Hugon J: Activated mTOR and PKR kinases in lymphocytes correlate with memory and cognitive decline in Alzheimer's disease. Dement Geriatr Cogn Disord. 22:320–326. 2006. View Article : Google Scholar : PubMed/NCBI

15 

Yang Z and Klionsky DJ: Mammalian autophagy: Core molecular machinery and signaling regulation. Curr Opin Cell Biol. 22:124–131. 2010. View Article : Google Scholar

16 

Spilman P, Podlutskaya N, Hart MJ, Debnath J, Gorostiza O, Bredesen D, Richardson A, Strong R and Galvan V: Inhibition of mTOR by rapamycin abolishes cognitive deficits and reduces amyloid-beta levels in a mouse model of Alzheimer's disease. PLoS One. 5:e99792010. View Article : Google Scholar

17 

Alonso A, Zaidi T, Novak M, Grundke-Iqbal I and Iqbal K: Hyperphosphorylation induces self-assembly of tau into tangles of paired helical filaments/straight filaments. Proc Natl Acad Sci USA. 98:6923–6928. 2001. View Article : Google Scholar : PubMed/NCBI

18 

Mathew R, Karp CM, Beaudoin B, Vuong N, Chen G, Chen HY, Bray K, Reddy A, Bhanot G, Gelinas C, et al: Autophagy suppresses tumorigenesis through elimination of p62. Cell. 137:1062–1075. 2009. View Article : Google Scholar : PubMed/NCBI

19 

Vigneron F, Dos Santos P, Lemoine S, Bonnet M, Tariosse L, Couffinhal T, Duplaà C and Jaspard-Vinassa B: GSK-3β at the crossroads in the signalling of heart preconditioning: Implication of mTOR and Wnt pathways. Cardiovasc Res. 90:49–56. 2011. View Article : Google Scholar : PubMed/NCBI

20 

LaFerla FM, Green KN and Oddo S: Intracellular amyloid-beta in Alzheimer's disease. Nat Rev Neurosci. 8:499–509. 2007. View Article : Google Scholar : PubMed/NCBI

21 

Iwata N, Tsubuki S, Takaki Y, Shirotani K, Lu B, Gerard NP, Gerard C, Hama E, Lee HJ and Saido TC: Metabolic regulation of brain Abeta by neprilysin. Science. 292:1550–1552. 2001. View Article : Google Scholar : PubMed/NCBI

22 

Farris W, Mansourian S, Chang Y, Lindsley L, Eckman EA, Frosch MP, Eckman CB, Tanzi RE, Selkoe DJ and Guenette S: Insulin-degrading enzyme regulates the levels of insulin, amyloid beta-protein, and the beta-amyloid precursor protein intracellular domain in vivo. Proc Natl Acad Sci USA. 100:4162–4167. 2003. View Article : Google Scholar : PubMed/NCBI

23 

Qiu WQ, Walsh DM, Ye Z, Vekrellis K, Zhang J, Podlisny MB, Rosner MR, Safavi A, Hersh LB and Selkoe DJ: Insulin-degrading enzyme regulates extracellular levels of amyloid beta-protein by degradation. J Biol Chem. 273:32730–32738. 1998. View Article : Google Scholar : PubMed/NCBI

24 

Son SM, Cha MY, Choi H, Kang S, Choi H, Lee MS, Park SA and Mook-Jung I: Insulin-degrading enzyme secretion from astrocytes is mediated by an autophagy-based unconventional secretory pathway in Alzheimer disease. Autophagy. 12:784–800. 2016. View Article : Google Scholar : PubMed/NCBI

25 

Ballatore C, Lee VM and Trojanowski JQ: Tau-mediated neuro-degeneration in Alzheimer's disease and related disorders. Nat Rev Neurosci. 8:663–672. 2007. View Article : Google Scholar : PubMed/NCBI

26 

Grundke-Iqbal I, Iqbal K, Tung YC, Quinlan M, Wisniewski HM and Binder LI: Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology. Proc Natl Acad Sci USA. 83:4913–4917. 1986. View Article : Google Scholar : PubMed/NCBI

27 

Rubinsztein DC: The roles of intracellular protein-degradation pathways in neurodegeneration. Nature. 443:780–786. 2006. View Article : Google Scholar : PubMed/NCBI

28 

Chesser AS, Pritchard SM and Johnson GV: Tau clearance mechanisms and their possible role in the pathogenesis of Alzheimer disease. Front Neurol. 4:1222013. View Article : Google Scholar : PubMed/NCBI

29 

Hara T, Nakamura K, Matsui M, Yamamoto A, Nakahara Y, Suzuki-Migishima R, Yokoyama M, Mishima K, Saito I, Okano H and Mizushima N: Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature. 441:885–889. 2006. View Article : Google Scholar : PubMed/NCBI

30 

Wang Y, Martinez-Vicente M, Krüger U, Kaushik S, Wong E, Mandelkow EM, Cuervo AM and Mandelkow E: Tau fragmentation, aggregation and clearance: The dual role of lysosomal processing. Hum Mol Genet. 18:4153–4170. 2009. View Article : Google Scholar : PubMed/NCBI

31 

Long ZM, Zhao L, Jiang R, Wang KJ, Luo SF, Zheng M, Li XF and He GQ: Valproic acid modifies synaptic structure and accelerates neurite outgrowth via the glycogen synthase kinase-3β signaling pathway in an Alzheimer's disease model. CNS Neurosci Ther. 21:887–897. 2015. View Article : Google Scholar : PubMed/NCBI

32 

Kempf SJ, Metaxas A, Ibáñez-Vea M, Darvesh S, Finsen B and Larsen MR: An integrated proteomics approach shows synaptic plasticity changes in an APP/PS1 Alzheimer's mouse model. Oncotarget. 7:33627–33648. 2016. View Article : Google Scholar : PubMed/NCBI

33 

Zhong L, Liu H, Zhang W, Liu X, Jiang B, Fei H and Sun Z: Ellagic acid ameliorates learning and memory impairment in APP/PS1 transgenic mice via inhibition of β-amyloid production and tau hyperphosphorylation. Exp Ther Med. 16:4951–4958. 2018.PubMed/NCBI

34 

Mariño G, Madeo F and Kroemer G: Autophagy for tissue homeostasis and neuroprotection. Curr Opin Cell Biol. 23:198–206. 2011. View Article : Google Scholar

35 

Pivtoraiko VN, Harrington AJ, Mader BJ, Luker AM, Caldwell GA, Caldwell KA, Roth KA and Shacka JJ: Low-dose bafilomycin attenuates neuronal cell death associated with autophagy-lysosome pathway dysfunction. J Neurochem. 114:1193–1204. 2010.PubMed/NCBI

36 

Chu CT: Autophagy in different flavors: Dysregulated protein degradation in neurological diseases. Neurobiol Dis. 43:1–3. 2011. View Article : Google Scholar : PubMed/NCBI

37 

Galluzzi L, Maiuri MC, Vitale I, Zischka H, Castedo M, Zitvogel L and Kroemer G: Cell death modalities: Classification and pathophysiological implications. Cell Death Differ. 14:1237–1243. 2007. View Article : Google Scholar : PubMed/NCBI

38 

Mullen RJ, Buck CR and Smith AM: NeuN, a neuronal specific nuclear protein in vertebrates. Development. 116:201–211. 1992.PubMed/NCBI

39 

Komatsu M, Waguri S, Chiba T, Murata S, Iwata J, Tanida I, Ueno T, Koike M, Uchiyama Y, Kominami E and Tanaka K: Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature. 441:880–884. 2006. View Article : Google Scholar : PubMed/NCBI

40 

Omata Y, Lim YM, Akao Y and Tsuda L: Age-induced reduction of autophagy-related gene expression is associated with onset of Alzheimer's disease. Am J Neurodegener Dis. 3:134–142. 2014.

41 

Salminen A, Kaarniranta K, Kauppinen A, Ojala J, Haapasalo A, Soininen H and Hiltunen M: Impaired autophagy and APP processing in Alzheimer's disease: The potential role of Beclin 1 interactome. Prog Neurobiol. 106-107:33–54. 2013. View Article : Google Scholar : PubMed/NCBI

42 

Jaeger PA, Pickford F, Sun CH, Lucin KM, Masliah E and Wyss-Coray T: Regulation of amyloid precursor protein processing by the Beclin 1 complex. PLoS One. 5:e111022010. View Article : Google Scholar : PubMed/NCBI

43 

Pickford F, Masliah E, Britschgi M, Lucin K, Narasimhan R, Jaeger PA, Small S, Spencer B, Rockenstein E, Levine B and Wyss-Coray T: The autophagy-related protein beclin 1 shows reduced expression in early Alzheimer disease and regulates amyloid beta accumulation in mice. J Clin Invest. 118:2190–2199. 2008.PubMed/NCBI

44 

Sarkar S, Perlstein EO, Imarisio S, Pineau S, Cordenier A, Maglathlin RL, Webster JA, Lewis TA, O'Kane CJ, Schreiber SL and Rubinsztein DC: Small molecules enhance autophagy and reduce toxicity in Huntington's disease models. Nat Chem Biol. 3:331–338. 2007. View Article : Google Scholar : PubMed/NCBI

45 

Williams A, Sarkar S, Cuddon P, Ttofi EK, Saiki S, Siddiqi FH, Jahreiss L, Fleming A, Pask D, Goldsmith P, et al: Novel targets for Huntington's disease in an mTOR-independent autophagy pathway. Nat Chem Biol. 4:295–305. 2008. View Article : Google Scholar : PubMed/NCBI

46 

Balgi AD, Fonseca BD, Donohue E, Tsang TC, Lajoie P, Proud CG, Nabi IR and Roberge M: Screen for chemical modulators of autophagy reveals novel therapeutic inhibitors of mTORC1 signaling. PLoS One. 4:e71242009. View Article : Google Scholar : PubMed/NCBI

47 

Jimenez-Sanchez M, Thomson F, Zavodszky E and Rubinsztein DC: Autophagy and polyglutamine diseases. Prog Neurobiol. 97:67–82. 2012. View Article : Google Scholar

48 

Bové J, Martinez-Vicente M and Vila M: Fighting neurodegeneration with rapamycin: Mechanistic insights. Nat Rev Neurosci. 12:437–452. 2011. View Article : Google Scholar : PubMed/NCBI

49 

Embi N, Rylatt DB and Cohen P: Glycogen synthase kinase-3 from rabbit skeletal muscle. Separation from cyclic-AMP-dependent protein kinase and phosphorylase kinase. Eur J Biochem. 107:519–527. 1980. View Article : Google Scholar : PubMed/NCBI

50 

Doble BW and Woodgett JR: Role of glycogen synthase kinase-3 in cell fate and epithelial-mesenchymal transitions. Cells Tissues Organs. 185:73–84. 2007. View Article : Google Scholar : PubMed/NCBI

51 

Forde JE and Dale TC: Glycogen synthase kinase 3: A key regulator of cellular fate. Cell Mol Life Sci. 64:1930–1944. 2007. View Article : Google Scholar : PubMed/NCBI

52 

Llorens-Martin M, Jurado J, Hernández F and Avila J: GSK-3β, a pivotal kinase in Alzheimer disease. Front Mol Neurosci. 7:462014.

53 

Rockenstein E, Torrance M, Adame A, Mante M, Bar-on P, Rose JB, Crews L and Masliah E: Neuroprotective effects of regulators of the glycogen synthase kinase-3beta signaling pathway in a transgenic model of Alzheimer's disease are associated with reduced amyloid precursor protein phosphorylation. J Neurosci. 27:1981–1991. 2007. View Article : Google Scholar : PubMed/NCBI

54 

Koh SH, Noh MY and Kim SH: Amyloid-beta-induced neuro-toxicity is reduced by inhibition of glycogen synthase kinase-3. Brain Res. 1188:254–262. 2008. View Article : Google Scholar

55 

Terwel D, Muyllaert D, Dewachter I, Borghgraef P, Croes S, Devijver H and Van Leuven F: Amyloid activates GSK-3beta to aggravate neuronal tauopathy in bigenic mice. Am J Pathol. 172:786–798. 2008. View Article : Google Scholar : PubMed/NCBI

56 

Lin SY, Li TY, Liu Q, Zhang C, Li X, Chen Y, Zhang SM, Lian G, Liu Q, Ruan K, et al: GSK3-TIP60-ULK1 signaling pathway links growth factor deprivation to autophagy. Science. 336:477–481. 2012. View Article : Google Scholar : PubMed/NCBI

57 

Cohen P and Frame S: The renaissance of GSK3. Nat Rev Mol Cell Biol. 2:769–776. 2001. View Article : Google Scholar : PubMed/NCBI

58 

Woodgett JR and Ohashi PS: GSK3: An in-Toll-erant protein kinase? Nat Immunol. 6:751–752. 2005. View Article : Google Scholar : PubMed/NCBI

59 

Zhang HH, Lipovsky AI, Dibble CC, Sahin M and Manning BD: S6K1 regulates GSK3 under conditions of mTOR-dependent feedback inhibition of Akt. Mol Cell. 24:185–197. 2006. View Article : Google Scholar : PubMed/NCBI

60 

Salinas PC and Zou Y: Wnt signaling in neural circuit assembly. Annu Rev Neurosci. 31:339–358. 2008. View Article : Google Scholar : PubMed/NCBI

61 

Inestrosa NC and Arenas E: Emerging roles of Wnts in the adult nervous system. Nat Rev Neurosci. 11:77–86. 2010. View Article : Google Scholar

62 

Moon RT, Kohn AD, De Ferrari GV and Kaykas A: WNT and beta-catenin signalling: Diseases and therapies. Nat Rev Genet. 5:691–701. 2004. View Article : Google Scholar : PubMed/NCBI

63 

Ciani L and Salinas PC: WNTs in the vertebrate nervous system: From patterning to neuronal connectivity. Nat Rev Neurosci. 6:351–362. 2005. View Article : Google Scholar : PubMed/NCBI

64 

Logan CY and Nusse R: The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol. 20:781–810. 2004. View Article : Google Scholar : PubMed/NCBI

65 

Gordon MD and Nusse R: Wnt signaling: Multiple pathways, multiple receptors, and multiple transcription factors. J Biol Chem. 281:22429–22433. 2006. View Article : Google Scholar : PubMed/NCBI

66 

Inestrosa NC, Montecinos-Oliva C and Fuenzalida M: Wnt signaling: Role in Alzheimer disease and schizophrenia. J Neuroimmune Pharmacol. 7:788–807. 2012. View Article : Google Scholar : PubMed/NCBI

67 

Lin AL, Jahrling JB, Zhang W, DeRosa N, Bakshi V, Romero P, Galvan V and Richardson A: Rapamycin rescues vascular, metabolic and learning deficits in apolipoprotein E4 transgenic mice with pre-symptomatic Alzheimer's disease. J Cereb Blood Flow Metab. 37:217–226. 2017. View Article : Google Scholar

68 

Liu W, Guo J, Mu J, Tian L and Zhou D: Rapamycin protects sepsis-induced cognitive impairment in mouse hippocampus by enhancing autophagy. Cell Mol Neurobiol. 37:1195–1205. 2017. View Article : Google Scholar

69 

Sarbassov DD, Ali SM and Sabatini DM: Growing roles for the mTOR pathway. Curr Opin Cell Biol. 17:596–603. 2005. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

July 2019
Volume 44 Issue 1

Print ISSN: 1107-3756
Online ISSN:1791-244X

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Chen, J., Long, Z., Li, Y., Luo, M., Luo, S., & He, G. (2019). Alteration of the Wnt/GSK3β/β‑catenin signalling pathway by rapamycin ameliorates pathology in an Alzheimer's disease model. International Journal of Molecular Medicine, 44, 313-323. https://doi.org/10.3892/ijmm.2019.4198
MLA
Chen, J., Long, Z., Li, Y., Luo, M., Luo, S., He, G."Alteration of the Wnt/GSK3β/β‑catenin signalling pathway by rapamycin ameliorates pathology in an Alzheimer's disease model". International Journal of Molecular Medicine 44.1 (2019): 313-323.
Chicago
Chen, J., Long, Z., Li, Y., Luo, M., Luo, S., He, G."Alteration of the Wnt/GSK3β/β‑catenin signalling pathway by rapamycin ameliorates pathology in an Alzheimer's disease model". International Journal of Molecular Medicine 44, no. 1 (2019): 313-323. https://doi.org/10.3892/ijmm.2019.4198