Triptolide exerts an anti-tumor effect on non‑small cell lung cancer cells by inhibiting activation of the IL‑6/STAT3 axis

  • Authors:
    • Ying Huang
    • Zhe Chen
    • Yu Wang
    • Xin Ba
    • Yao Huang
    • Pan Shen
    • Hui Wang
    • Shenghao Tu
  • View Affiliations

  • Published online on: May 14, 2019     https://doi.org/10.3892/ijmm.2019.4197
  • Pages: 291-300
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Lung cancer is the leading cause of cancer‑associated mortality and current treatments are not sufficiently effective. Numerous studies have revealed that triptolide (TP), a classical traditional Chinese medicine compound widely used as an anti‑inflammatory and antirheumatic drug, also has an antitumor effect. This effect is hypothesized to be mediated by multiple pathways, with signal transducer and activator of transcription 3 (STAT3) possibly one of them. Evidence indicates that STAT3 participates in the initiation and progression of lung cancer during cell proliferation, apoptosis and migration; however, whether and how TP affects STAT3 and its targets remain unclear. In this study, the potential role of TP in the proliferation, apoptosis, and migration of non‑small cell lung cancer cell lines was investigated and evaluated the impact of TP on the interleukin‑6 (IL‑6)/STAT3 axis. The results showed that TP inhibited cell proliferation and migration and induced apoptosis. TP decreased the phosphorylation of STAT3, inhibited STAT3 translocation into the nucleus, and reduced the expression of STAT3 target genes involved in cell survival, apoptosis and migration, e.g. C‑myc, BCL‑2, myeloid cell leukemia‑1 (MCL‑1), and matrix metallopeptidase 9 (MMP‑9). Additionally, IL‑6‑induced activation of STAT3 target genes (e.g. MCL‑1 and BCL‑2) was attenuated by TP and homoharringtonine. In conclusion, the effect of TP on STAT3 signaling points to a promising strategy for drug development.

References

1 

Hong QY, Wu GM, Qian GS, Hu CP, Zhou JY, Chen LA, Li WM, Li SY, Wang K, Wang Q, et al: Prevention and management of lung cancer in China. Cancer. 121(Suppl 17): S3080–S3088. 2015. View Article : Google Scholar

2 

Herbst RS, Morgensztern D and Boshoff C: The biology and management of non-small cell lung cancer. Nature. 553:446–454. 2018. View Article : Google Scholar : PubMed/NCBI

3 

Shi Y, Sun Y, Ding C, Wang Z, Wang C, Wang Z, Bai C, Bai C, Feng J, Liu X, et al: China experts consensus on icotinib for non-small cell lung cancer treatment (2015 version). J Thorac Dis. 7:E468–E472. 2015.PubMed/NCBI

4 

Hirsch FR, Scagliotti GV, Mulshine JL, Kwon R, Curran WJ Jr, Wu YL and Paz-Ares L: Lung cancer: Current therapies and new targeted treatments. Lancet. 389:299–311. 2017. View Article : Google Scholar

5 

Gao SP, Mark KG, Leslie K, Pao W, Motoi N, Gerald WL, Travis WD, Bornmann W, Veach D, Clarkson B and Bromberg JF: Mutations in the EGFR kinase domain mediate STAT3 activation via IL-6 production in human lung adenocarcinomas. J Clin Invest. 117:3846–3856. 2007. View Article : Google Scholar : PubMed/NCBI

6 

Yu H, Pardoll D and Jove R: STATs in cancer inflammation and immunity: A leading role for STAT3. Nat Rev Cancer. 9:798–809. 2009. View Article : Google Scholar : PubMed/NCBI

7 

Bournazou E and Bromberg J: Targeting the tumor microenvironment: JAK-STAT3 signaling. JAKSTAT. 2:e238282013.PubMed/NCBI

8 

Bromberg JF, Wrzeszczynska MH, Devgan G, Zhao Y, Pestell RG, Albanese C and Darnell JE Jr: Stat3 as an oncogene. Cell. 98:295–303. 1999. View Article : Google Scholar : PubMed/NCBI

9 

Li CJ, Li YC, Zhang DR and Pan JH: Signal transducers and activators of transcription 3 function in lung cancer. J Cancer Res Ther. 9(Suppl 2): S67–S73. 2013. View Article : Google Scholar : PubMed/NCBI

10 

Grivennikov SI and Karin M: Dangerous liaisons: STAT3 and NF-kappa B collaboration and crosstalk in cancer. Cytokine Growth Factor Rev. 21:11–19. 2010. View Article : Google Scholar

11 

Brown JM and Wilson G: Apoptosis genes and resistance to cancer therapy: What does the experimental and clinical data tell us? Cancer Biol Ther. 2:477–790. 2003. View Article : Google Scholar : PubMed/NCBI

12 

Barré B, Vigneron A, Perkins N, Roninson IB, Gamelin E and Coqueret O: The STAT3 oncogene as a predictive marker of drug resistance. Trends Mol Med. 13:4–11. 2007. View Article : Google Scholar

13 

Yan X, Li P, Zhan Y, Qi M, Liu J, An Z, Yang W, Xiao H, Wu H, Qi Y and Shao H: Dihydroartemisinin suppresses STAT3 signaling and Mcl-1 and Survivin expression to potentiate ABT-263-induced apoptosis in non-small cell lung cancer cells harboring EGFR or RAS mutation. Biochem Pharmacol. 150:72–85. 2018. View Article : Google Scholar : PubMed/NCBI

14 

Xu YH and Lu S: A meta-analysis of STAT3 and phospho-STAT3 expression and survival of patients with non-small-cell lung cancer. Eur J Surg Oncol. 40:311–317. 2014. View Article : Google Scholar

15 

Mishra BB and Tiwari VK: Natural products: An evolving role in future drug discovery. Eur J Med Chem. 46:4769–4807. 2011. View Article : Google Scholar : PubMed/NCBI

16 

Liu L, Xiong X, Shen M, Ru D, Gao P, Zhang X, Huang C, Sun Y, Li H and Duan Y: Co-delivery of triptolide and curcumin for ovarian cancer targeting therapy via mPEG-DPPE/CaP nanoparticle. J Biomed Nanotechnol. 14:1761–1772. 2018. View Article : Google Scholar : PubMed/NCBI

17 

Klauber-DeMore N, Schulte BA and Wang GY: Targeting MYC for triple-negative breast cancer treatment. Oncoscience. 5:120–121. 2018.PubMed/NCBI

18 

Li SG, Shi QW, Yuan LY, Qin LP, Wang Y, Miao YQ, Chen Z, Ling CQ and Qin WX: C-Myc-dependent repression of two oncogenic miRNA clusters contributes to triptolide-induced cell death in hepatocellular carcinoma cells. J Exp Clin Cancer Res. 37:512018. View Article : Google Scholar : PubMed/NCBI

19 

Mao X, Tong J and Wang Y, Zhu Z, Yin Y and Wang Y: Triptolide exhibits antitumor effects by reversing hypermethylation of WIF1 in lung cancer cells. Mol Med Rep. 18:3041–3049. 2018.PubMed/NCBI

20 

Hou ZY, Tong XP, Peng YB, Zhang BK and Yan M: Broad targeting of triptolide to resistance and sensitization for cancer therapy. Biomed Pharmacother. 104:771–780. 2018. View Article : Google Scholar : PubMed/NCBI

21 

Beglyarova N, Banina E, Zhou Y, Mukhamadeeva R, Andrianov G, Bobrov E, Lysenko E, Skobeleva N, Gabitova L, Restifo D, et al: Screening of conditionally reprogrammed patient-derived carcinoma cells identifies ERCC3-MYC interactions as a target in pancreatic cancer. Clin Cancer Res. 22:6153–6163. 2016. View Article : Google Scholar : PubMed/NCBI

22 

Meng C, Zhu H, Song H, Wang Z, Huang G, Li D, Ma Z and Ma J, Qin Q, Sun X and Ma J: Targets and molecular mechanisms of triptolide in cancer therapy. Chin J Cancer Res. 26:622–626. 2014.PubMed/NCBI

23 

Chang L, Lei X, Qin YU, Zhang X, Jin H, Wang C, Wang X, Li G, Tan C and Su J: MicroRNA-133b inhibits cell migration and invasion by targeting matrix metalloproteinase 14 in glioblastoma. Oncol Lett. 10:2781–2786. 2015. View Article : Google Scholar

24 

Li Z, Jiao X, Wang C, Shirley LA, Elsaleh H, Dahl O, Wang M, Soutoglou E, Knudsen ES and Pestell RG: Alternative cyclin D1 splice forms differentially regulate the DNA damage response. Cancer Res. 70:8802–8811. 2010. View Article : Google Scholar : PubMed/NCBI

25 

Lamb J, Ramaswamy S, Ford HL, Contreras B, Martinez RV, Kittrell FS, Zahnow CA, Patterson N, Golub TR and Ewen ME: A mechanism of cyclin D1 action encoded in the patterns of gene expression in human cancer. Cell. 114:323–334. 2003. View Article : Google Scholar : PubMed/NCBI

26 

Dremina ES, Sharov VS and Schöneich C: Heat-shock proteins attenuate SERCA inactivation by the anti-apoptotic protein Bcl-2: Possible implications for the ER Ca2+-mediated apoptosis. Biochem J. 444:127–139. 2012. View Article : Google Scholar : PubMed/NCBI

27 

Duan S, Tsai Y, Keng P and Chen Y, Lee SO and Chen Y: IL-6 signaling contributes to cisplatin resistance in non-small cell lung cancer via the up-regulation of anti-apoptotic and DNA repair associated molecules. Oncotarget. 6:27651–27660. 2015. View Article : Google Scholar : PubMed/NCBI

28 

Ham IH, Oh HJ, Jin H, Bae CA, Jeon SM, Choi KS, Son SY, Han SU, Brekken RA, Lee D and Hur H: Targeting interleukin-6 as a strategy to overcome stroma-induced resistance to chemotherapy in gastric cancer. Mol Cancer. 18:682019. View Article : Google Scholar : PubMed/NCBI

29 

Sharma SB and Gupta R: Drug development from natural resource: A systematic approach. Mini Rev Med Chem. 15:52–57. 2015. View Article : Google Scholar : PubMed/NCBI

30 

Yan P and Sun X: Triptolide: A new star for treating human malignancies. J Cancer Res Ther. 14(Suppl): S271–S275. 2018. View Article : Google Scholar : PubMed/NCBI

31 

Jiang N, Dong XP, Zhang SL, You QY, Jiang XT and Zhao XG: Triptolide reverses the Taxol resistance of lung adenocarcinoma by inhibiting the NF-κB signaling pathway and the expression of NF-κB-regulated drug-resistant genes. Mol Med Rep. 13:153–159. 2016. View Article : Google Scholar

32 

Teng F, Xu Z, Chen J, Zheng G, Zheng G, Lv H, Wang Y, Wang L and Cheng X: DUSP1 induces apatinib resistance by activating the MAPK pathway in gastric cancer. Oncol Rep. 40:1203–1222. 2018.PubMed/NCBI

33 

Li X, Lu Q, Xie W, Wang Y and Wang G: Anti-tumor effects of triptolide on angiogenesis and cell apoptosis in osteosarcoma cells by inducing autophagy via repressing Wnt/β-catenin signaling. Biochem Biophys Res Commun. 496:443–449. 2018. View Article : Google Scholar : PubMed/NCBI

34 

Fan D, He X, Bian Y, Guo Q, Zheng K, Zhao Y, Lu C, Liu B, Xu X, Zhang G and Lu A: Triptolide modulates TREM-1 signal pathway to inhibit the inflammatory response in rheumatoid arthritis. Int J Mol Sci. 17:4982016. View Article : Google Scholar : PubMed/NCBI

35 

Chen J, Gao J, Yang J, Zhang Y and Wang L: Effect of triptolide on the regulation of ATP-binding cassette transporter A1 expression in lipopolysaccharide-induced acute lung injury of rats. Mol Med Rep. 10:3015–3020. 2014. View Article : Google Scholar : PubMed/NCBI

36 

Vispé S, DeVries L, Créancier L, Besse J, Bréand S, Hobson DJ, Svejstrup JQ, Annereau JP, Cussac D, Dumontet C, et al: Triptolide is an inhibitor of RNA polymerase I and II-dependent transcription leading predominantly to down-regulation of short-lived mRNA. Mol Cancer Ther. 8:2780–2790. 2009. View Article : Google Scholar : PubMed/NCBI

37 

Wang Z, Jin H, Xu R, Mei Q and Fan D: Triptolide downregulates Rac1 and the JAK/STAT3 pathway and inhibits colitis-related colon cancer progression. Exp Mol Med. 41:717–727. 2009. View Article : Google Scholar : PubMed/NCBI

38 

Ma J, Zhao Z, Wu K, Xu Z and Liu K: MCL-1 is the key target of adjuvant chemotherapy to reverse the cisplatin-resistance in NSCLC. Gene. 587:147–154. 2016. View Article : Google Scholar : PubMed/NCBI

39 

Oliveira A, Beyer G, Chugh R, Skube SJ, Majumder K, Banerjee S, Sangwan V, Li L, Dawra R, Subramanian S, et al: Triptolide abrogates growth of colon cancer and induces cell cycle arrest by inhibiting transcriptional activation of E2F. Lab Invest. 95:648–659. 2015. View Article : Google Scholar : PubMed/NCBI

40 

Biliran H Jr, Wang Y, Banerjee S, Xu H, Heng H, Thakur A, Bollig A, Sarkar FH and Liao JD: Overexpression of cyclin D1 promotes tumor cell growth and confers resistance to cispl-atin-mediated apoptosis in an elastase-myc transgene-expressing pancreatic tumor cell line. Clin Cancer Res. 11:6075–6086. 2005. View Article : Google Scholar : PubMed/NCBI

41 

Aggarwal P, Vaites LP, Kim JK, Mellert H, Gurung B, Nakagawa H, Herlyn M, Hua X, Rustgi AK, McMahon SB and Diehl JA: Nuclear cyclin D1/CDK4 kinase regulates CUL4 expression and triggers neoplastic growth via activation of the PRMT5 methyltransferase. Cancer Cell. 18:329–340. 2010. View Article : Google Scholar : PubMed/NCBI

42 

Shields BJ, Hauser C, Bukczynska PE, Court NW and Tiganis T: DNA replication stalling attenuates tyrosine kinase signaling to suppress S phase progression. Cancer Cell. 14:166–179. 2008. View Article : Google Scholar : PubMed/NCBI

43 

Jirawatnotai S, Hu Y, Michowski W, Elias JE, Becks L, Bienvenu F, Zagozdzon A, Goswami T, Wang YE, Clark AB, et al: A function for cyclin D1 in DNA repair uncovered by protein interactome analyses in human cancers. Nature. 474:230–234. 2011. View Article : Google Scholar : PubMed/NCBI

44 

Yao Z, Fenoglio S, Gao DC, Camiolo M, Stiles B, Lindsted T, Schlederer M, Johns C, Altorki N, Mittal V, et al: TGF-beta IL-6 axis mediates selective and adaptive mechanisms of resistance to molecular targeted therapy in lung cancer. Proc Natl Acad Sci USA. 107:15535–15540. 2010. View Article : Google Scholar : PubMed/NCBI

45 

Wang S, Long S, Xiao S, Wu W and Hann SS: Decoction of chinese herbal medicine fuzheng kang-ai induces lung cancer cell apoptosis via STAT3/Bcl-2/caspase-3 pathway. Evid Based Complement Alternat Med. 2018:85679052018. View Article : Google Scholar : PubMed/NCBI

46 

Yu H and Jove R: The stats of cancer-new molecular targets come of age. Nat Rev Cancer. 4:97–105. 2004. View Article : Google Scholar : PubMed/NCBI

47 

Dechow TN, Pedranzini L, Leitch A, Leslie K, Gerald WL, Linkov I and Bromberg JF: Requirement of matrix metallopro-teinase-9 for the transformation of human mammary epithelial cells by Stat3-C. Proc Natl Acad Sci USA. 101:10602–10607. 2004. View Article : Google Scholar

48 

El-Badrawy MK, Yousef AM, Shaalan D and Elsamanoudy AZ: Matrix metalloproteinase-9 expression in lung cancer patients and its relation to serum mmp-9 activity, pathologic type, and prognosis. J Bronchology Interv Pulmonol. 21:327–334. 2014. View Article : Google Scholar : PubMed/NCBI

49 

Backstrom JR and Tökés ZA: The 84-kDa form of human matrix metalloproteinase-9 degrades substance P and gelatin. J Neurochem. 64:1312–1318. 1995. View Article : Google Scholar : PubMed/NCBI

50 

Ao N and Liu Y, Bian X, Feng H and Liu Y: Ubiquitin-specific peptidase 22 inhibits colon cancer cell invasion by suppressing the signal transducer and activator of transcription 3/matrix metalloproteinase 9 pathway. Mol Med Rep. 12:2107–2113. 2015. View Article : Google Scholar : PubMed/NCBI

51 

Kim JH and Park B: Triptolide blocks the STAT3 signaling pathway through induction of protein tyrosine phosphatase SHP-1 in multiple myeloma cells. Int J Mol Med. 40:1566–1572. 2017. View Article : Google Scholar : PubMed/NCBI

52 

Niu F, Li Y, Lai FF, Ni L, Ji M, Jin J, Yang HZ, Wang C, Zhang DM and Chen XG: LB-1 exerts antitumor activity in pancreatic cancer by inhibiting HIF-1α and Stat3 signaling. J Cell Physiol. 230:2212–2223. 2015. View Article : Google Scholar : PubMed/NCBI

53 

Kim SM, Kwon OJ, Hong YK, Kim JH, Solca F, Ha SJ, Soo RA, Christensen JG, Lee JH and Cho BC: Activation of IL-6R/JAK1/STAT3 signaling induces de novo resistance to irreversible EGFR inhibitors in non-small cell lung cancer with T790M resistance mutation. Mol Cancer Ther. 11:2254–2264. 2012. View Article : Google Scholar : PubMed/NCBI

54 

Maji S, Shriwas O, Samal SK, Priyadarshini M, Rath R, Panda S, Das Majumdar SK, Muduly DK and Dash R: STAT3- and GSK3β-mediated Mcl-1 regulation modulates TPF resistance in oral squamous cell carcinoma. Carcinogenesis. 40:173–183. 2019. View Article : Google Scholar

Related Articles

Journal Cover

July 2019
Volume 44 Issue 1

Print ISSN: 1107-3756
Online ISSN:1791-244X

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Huang, Y., Chen, Z., Wang, Y., Ba, X., Huang, Y., Shen, P. ... Tu, S. (2019). Triptolide exerts an anti-tumor effect on non‑small cell lung cancer cells by inhibiting activation of the IL‑6/STAT3 axis. International Journal of Molecular Medicine, 44, 291-300. https://doi.org/10.3892/ijmm.2019.4197
MLA
Huang, Y., Chen, Z., Wang, Y., Ba, X., Huang, Y., Shen, P., Wang, H., Tu, S."Triptolide exerts an anti-tumor effect on non‑small cell lung cancer cells by inhibiting activation of the IL‑6/STAT3 axis". International Journal of Molecular Medicine 44.1 (2019): 291-300.
Chicago
Huang, Y., Chen, Z., Wang, Y., Ba, X., Huang, Y., Shen, P., Wang, H., Tu, S."Triptolide exerts an anti-tumor effect on non‑small cell lung cancer cells by inhibiting activation of the IL‑6/STAT3 axis". International Journal of Molecular Medicine 44, no. 1 (2019): 291-300. https://doi.org/10.3892/ijmm.2019.4197