Neuroprotective effects of midazolam on focal cerebral ischemia in rats through anti-apoptotic mechanisms

HANG YU1, XIAOZHI WANG1, FUXIN KANG1, ZHILE CHEN1, YUNXIA MENG1 and MINGMING DAI2

1Intensive Care Unit; 2Department of Internal Neurology, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570311, P.R. China

Received September 3, 2017; Accepted February 2, 2018

DOI: 10.3892/ijmm.2018.3973

Abstract. Stroke is a cerebrovascular circulatory disorder and its high mortality rate represents a prominent threat to human health. Subsequent apoptosis and cytotoxicity are the main causes underlying the poor prognosis. Midazolam (MDZ) is a benzodiazepine drug that is clinically used during surgical procedures and for the treatment of insomnia, with a potential ability to treat stroke. The protective effect of MDZ was investigated on glutamate-induced cortical neuronal injuries in vitro and transient middle cerebral artery occlusion (tMCAO) rat models in vivo. Western blot analysis and semi quantitative RT-PCR were used to evaluate the potential underlying mechanisms. In vitro studies revealed that MDZ regulated apoptosis-associated gene expression and inhibited lactate dehydrogenase (LDH) release, protecting against neuronal damage. In vivo studies revealed that MDZ reduced LDH-induced neuronal damage by reducing LDH release from the peripheral blood, and brain tissue staining revealed that MDZ protected neurons during tMCAO. MDZ protected neurons under an ischemic environment by inhibiting LDH release and regulating apoptosis-associated gene expression to reduce cytotoxicity and apoptosis. These results provide a reliable basis for further studies on the effect of MDZ, to improve the prognosis of cerebral infarction.

Introduction

Stroke, especially ischemic stroke, is a disorder that results in high rates of disability and mortality (1,2). High incidence and recurrence rates are also characteristics, resulting in a serious threat to human health (3). The poor prognosis is partially due to the subsequent release of cytotoxic factors and the resultant apoptosis (4-6). Apoptosis caused by focal ischemia of a short duration (30-60 min) is a prominent feature of the ischemic stroke region and penumbra border region, where neuronal degeneration and necrosis occur (7,8). Thus, the development of anti-apoptotic drugs able to improve the prognosis of stroke is necessary (9).

Previous studies have demonstrated that B cell lymphoma-2 (Bcl-2) and caspase-3 are involved in apoptosis regulation (9-11). Bcl-2 overexpression inhibits the activation of caspase-3 and subsequent apoptosis (10). Caspase-3 is the most important terminal cleavage enzyme in the process of apoptosis, and serves a major function in the induction of apoptosis (10,12). P53 also increases the expression of BCL2 associated X, apoptosis regulator (Bax), which is an apoptosis promoter belonging to the BCL-2 gene family, and its overexpression antagonizes Bcl-2 (13). Bcl-2 downregulation also promotes apoptosis (14). Thus, Bcl-2/Bax, caspase-3 and p53 may serve an important function in apoptosis, including neuronal apoptosis.

Glutamate (GLU) is an excitatory neurotransmitter in the central nervous system, but its excessive accumulation in the extracellular matrix may result in ischemic brain damage (15). Lactate dehydrogenase (LDH) is present in the cytoplasm of normal cells and is released when the cells are damaged. Thus, its activity reflects the degree of cell damage and cytotoxicity (16).

Midazolam (MDZ) is a typical benzodiazepine drug with several functions, including anti-anxiety, sedation and hypnosis. Intramuscular or intravenous injection produces short anterograde memory loss, since the drug is capable of quickly crossing the blood-brain barrier (17,18). MDZ does not appear to induce drug resistance, abstinence symptoms or rebound (17). MDZ has previously been demonstrated to inhibit caspase-3 activation (19). Furthermore, MDZ inhibits the apoptosis of astrocytes induced by oxygen and glucose deprivation (20). Therefore, MDZ may exert a protective effect on neuronal apoptosis induced by cerebral ischemia.

Thus, the hypothesis of the present study was that MDZ regulates the expression of apoptosis-associated genes to inhibit apoptosis, together with the inhibition of cytotoxicity to protect neurons and confer recovery-promoting effects.

To validate this hypothesis, GLU-induced neuronal injury was performed in vitro. LDH release and the expression of apoptosis-associated genes were measured to evaluate cytotoxicity and apoptosis. In the constructed transient middle
cerebral artery occlusion (tMCAO) animal model, neuronal protection was evaluated by an LDH release assay and tissue staining.

Materials and methods

Neuron isolation and culture. Neurons were obtained from 20 male Sprague Dawley rats (8-12 weeks old; weight, 300-500 g) purchased from the Animal Experimental Center of Hainan Medical University, The Second Affiliated Hospital (Haikou, China). Rats had free access to water and food and they were kept under the standard laboratory conditions (22-25°C; 65±5% humidity; 12 h light/dark cycle). Following sacrifice, the brain was carefully removed from the skull and placed on ice. The meninges were removed under a dissecting light microscope and the cortical tissue was collected, placed in a centrifuge tube, mixed with 0.125% trypsin (Beyotime Institute of Biotechnology, Haimen, China) and digested at 37°C for 30 min. Dulbecco's modified Eagle's medium (DMEM; Invitrogen; Thermo Fisher Scientific, Inc., Waltham, MA, USA) containing 5% fetal bovine serum (FBS; Gibco; Thermo Fisher Scientific, Inc.) was added to the digested tissue and the mixture was carefully pipetted. Then, the tube was left to stand at 37°C. Fluid without large particles was transferred into another centrifuge tube and the cell suspension was carefully pipetted several times to obtain a suspension with no visible tissue. Fluid was pipetted in a six-well plate and the supernatant was transferred to another plate containing 5% FBS, 2% B27 (Gibco; Thermo Fisher Scientific, Inc.) and neurobasal medium (Gibco; Thermo Fisher Scientific, Inc.) after 2 h (21,22).

MTT assay. Neuron viability was detected by MTT assay. A total of 10^4 neurons/well were seeded in 96-well plates containing 200 µl DMEM with 10% FBS to evaluate neuron proliferation at different concentrations of MDZ (Shanghai Guyan Biological Technology Co., Ltd., Shanghai, China) and GLU (Sigma-Aldrich; Merck KGaA, Darmstadt, Germany). MTT was added and incubated for 4 h at 37°C (Cytotoxicity Assay kit; Beyotime Institute of Biotechnology). DMSO (Sigma-Aldrich; Merck KGaA) was used to dissolve the formazan crystals. Optical density was measured at a wavelength of 570 nm. Neurons without MDZ or GLU treatment were used as described in the previous paragraph, and incubated with GLU and MDZ at different concentrations as aforementioned. LDH was measured using an LDH assay kit (Nanjing KeyGen Biotech Co., Ltd., Nanjing, China) according to the manufacturer's protocol (16,25).

LDH release assay. Neurons were seeded as described in the previous paragraph, and incubated with GLU and MDZ at different concentrations as aforementioned. LDH was measured using an LDH assay kit (Nanjing KeyGen Biotech Co., Ltd., Nanjing, China) according to the manufacturer's protocol (16,25).

Apoptosis evaluation by flow cytometry. Neurons were seeded as previously described and incubated with 0.7 mM MDZ and GLU (final concentration, 100 µM). In group 2, only GLU was added (final concentration, 100 µM), while the control group lacked any treatment. The medium was washed, neurons were washed with PBS and EGTA-free trypsin was added. When neurons were detached, PBS was added, and neurons were collected in a 15 ml tube and centrifuged at 1,000 x g for 3 min at room temperature. Next, neurons were washed with PBS and centrifuged at 1,000 x g for 3 min at room temperature. Annexin-V from a Fluorescein Isothiocyanate-Annexin V Apoptosis Detection kit (BD Biosciences, San Jose, CA, USA) was used according to the manufacturer's protocol and apoptosis was measured by MoFlo Astrios EQ flow cytometry and corresponding Summit version 6.2 software was used to analyze the results (Beckman Coulter, Brea, CA, USA) (26,27).

Western blot. Neurons were cultured in serum-free DMEM medium for 24 h. NP40 cell lysis buffer (Gibco; Thermo Fisher Scientific, Inc.) was used to lyse neurons on ice for 5 min, and sonication (20-24 kHz) was used to further cell cleavage at 0°C (8 times within 2 min, 5 sec each time and pauses of 10 sec). Cell debris was removed by centrifugation at 1,000 x g for 1 min at 0°C and total protein was obtained and detected by Bicinchoninic acid (BCA) method using BCA Protein Assay kit (Beyotime Institute of Biotechnology) according to the manufacturer's protocol.

Graded 4-15% polyacrylamide gels were used (Bio-Rad Laboratories, Inc., Hercules, CA, USA) and 50 µg protein were loaded per lane, followed by electrophoresis to separate the target proteins. Then, proteins were transferred onto Immobilon-P membranes (Sigma-Aldrich; Merck KGaA), and membranes were blocked by 5% non-fat milk for 1 h at room temperature. Samples were incubated overnight with antibodies against Bcl-2 (cat. no. ab692; 1:500), Bax (cat. no. ab32503; 1:500), p53 (cat. no. ab26; 1:1,000), caspase-3 (cat. no. ab3258; 1:500) and GAPDH (cat. no. ab8245; 1:500) all from Abcam (Cambridge, MA, USA), diluted in 5% skim milk powder. Following washing twice with PBS and Dulbecco's PBS, samples were treated with goat anti-mouse immunoglobulin G H&L (cat. no. ab6785; 1:10,000; Sigma-Aldrich; Merck KGaA) and incubated at room temperature for 1 h. Immunoreactive bands were cut and an Odyssey SA infrared imaging system (LI-COR Biosciences, Lincoln, NE, USA) was used to observe the results (28,29).

Semi quantitative reverse transcription-polymerase chain reaction (RT-PCR). Semi quantitative RT-PCR amplification was used to evaluate the expression of apoptotic genes with the A1250 Access RT-PCR system (Promega Corporation, Madison, WI, USA). Neurons were digested with 5% trypsin (Beyotime Institute of Biotechnology) and divided into single cells under a light microscope. Then, cells were lysed with NP40 cell lysis buffer in PCR tubes for 2 h on ice. MgSO_{4} (25 mM), nuclease-free water, dNTP mix, AMV/Tfl 5X Reaction Buffer, SuperScript® IV reverse transcriptase (all Invitrogen; Thermo Fisher Scientific, Inc.), and specific upstream and downstream primers for GAPDH, p53, caspase-3, Bcl-2 and Bax were added to a 0.5 ml reaction tube. The thermocycling conditions for the PCR were set according to the manufacturer's protocol of SuperScript™ One-Step RT-PCR System with Platinum™ Taq DNA Polymerase included in the Prime Script TM RT reagent kit (Invitrogen; Thermo Fisher Scientific, Inc.). PCR products were detected by 1.2% agar gel electrophoresis (0.5 µg/ml ethidium bromide) and observed...
under ultra violet light, as previously described (30,31). The results were analyzed by Quantity One software (version 4.6.2; Bio-Rad Laboratories, Inc.). The primers used were the following: GAPDH forward, 5'-ACCACAGTCCATGCCATAC AC-3' and reverse, 5'-TCCACCACCTTTGTCTGTA-3'; p53 forward, 5'-ACCTATGGAAACTACTTCTTGAA-3' and reverse, 5'-CTGGCATTCTGAGGCTTCA-3'; caspase-3 forward, 5'-TGGAAAGTTGACCTGTGACC-3' and reverse, 5'-AGGACTCAATTTGGTGACCC-3'; Bcl-2 forward, 5'-TTCCTAGAGTTCCGGTGTC-3' and reverse, 5'-TGCTATTTGTTTGGGGCAGG-3'; and Bax forward, 5'-TCCACCAAGAGCTAGCGAGA-3' and reverse; 5'-GTC CAGCCCCATGATGGTCT-3'.

Animal model. All animal procedures followed the Guide for the Care and Use of Laboratory Animals (33) and were approved by the Institutional Clinical Experiments Committee of the Second Affiliated Hospital of Hainan Medical University (Haikou, China). Sprague Dawley rats (male, 3 months old, 300-500 g) were randomly divided into 4 groups as follows (n=40; n=10 in each group): Sham group, model group, MDZ (2 mg/kg) group, and MDZ (5 mg/kg) group. Rats had free access to water and food and they were housed under stable conditions (22-25°C; 0.03% CO2; 65±5% humidity; 12 h light/dark cycle). Sodium pentobarbital 2.5% (36 mg/kg; Sigma-Aldrich; Merck KGaA) was used to anesthetize the animals. After 30 min at room temperature (37), rats were terminally anesthetized by 1.5% halothane. Thus, they were used for further experiments.

Behavioral analysis. The BBB behavior score was used to assess the effect of MDZ on behavior of tMCAO rats (39). Rats were divided into four groups as described above. The assessment was performed at 0, 24 and 72 h following treatment with MDZ. Movement, balance and coordination of limbs, joints, and the whole body of rats were assessed and scored 0-21. Scoring 0-7 points indicated that rats exhibited few or no hindlimb joint movements, 8-14 points indicated ataxic gait and 15-21 points indicated that rats could perform fine movements including toe and tail movements.

Statistical analysis. Statistical analysis was performed using SPSS 13.0 software package (SPSS, Inc., Chicago, IL, USA). Results are expressed as the mean ± standard deviation, and one-way analysis of variance with Dunnett's t-test was used to evaluate significance. P<0.05 was considered to indicate a statistically significant difference.

Results

MDZ reduces GLU-induced neuronal cytotoxicity and apoptosis. To begin, extracted neurons were identified and neuron purity was tested. Neurons were observed under a microscope and were revealed to have normal morphology and clear nerve fiber growth (Fig. 1A). In addition, immunofluorescent staining revealed the purity of the extracted neurons (Fig. 1B). Thus, they were used for further experiments.

Next, the function of GLU in the induction of cytotoxicity and apoptosis was demonstrated in vitro. The change in staining absorbance with or without GLU treatment was measured. The MTT assay results revealed that the number of cells was reduced to 1/3 following GLU treatment (Fig. 1C). Furthermore, LDH release was increased to 257% compared with the control (Fig. 1D). A significant increase in apoptotic cells following GLU treatment was observed using flow cytometry (Fig. 2A).

Subsequently, the effect of MDZ was evaluated, demonstrating a reduced cytotoxicity and apoptosis in vitro. MDZ reduced neuronal death and LDH release, and the protective effect was concentration-dependent (Fig. 1C and D), reaching ascending aorta and next with 4% paraformaldehyde. Neurons cultured in vitro were also subjected to immunofluorescence staining. Sections of terminally anesthetized tMCAO rats were cut (10-20 μm thickness) using a cryomicrotome and incubated with 3% goat serum (R&D Systems, Inc., Minneapolis, MN, USA) at 37°C for 40 min. Sections were then incubated with rabbit polyclonal primary antibody against RNA binding fox-1 homolog 3 (1:500; cat. no. ab177487; Abcam) or rat polyclonal primary antibody against neuron filament protein (1:500; cat. no. ab4666; Abcam) and Alzheimer-associated neuronal thread protein (1:500; cat. no. ab49385; Abcam) overnight at 4°C, followed by incubation with secondary antibody (Alexa Fluor 568-donkey anti-mouse immunoglobulin G; 1:1,000; cat. no. ab175700; Abcam) for 2 h at 25°C. Subsequently, nuclei were counterstained using DAPI (Abcam) at room temperature for 20 min. The stained sections were examined with a Leica fluorescence microscope (Leica Microsystems GmbH, Wetzlar, Germany) (38,39). The number of rats used for each group was 10.

Statistical analysis. Statistical analysis was performed using SPSS 13.0 software package (SPSS, Inc., Chicago, IL, USA). Results are expressed as the mean ± standard deviation, and one-way analysis of variance with Dunnett's t-test was used to evaluate significance. P<0.05 was considered to indicate a statistically significant difference.

Results

MDZ reduces GLU-induced neuronal cytotoxicity and apoptosis. To begin, extracted neurons were identified and neuron purity was tested. Neurons were observed under a microscope and were revealed to have normal morphology and clear nerve fiber growth (Fig. 1A). In addition, immunofluorescent staining revealed the purity of the extracted neurons (Fig. 1B). Thus, they were used for further experiments.

Next, the function of GLU in the induction of cytotoxicity and apoptosis was demonstrated in vitro. The change in staining absorbance with or without GLU treatment was measured. The MTT assay results revealed that the number of cells was reduced to 1/3 following GLU treatment (Fig. 1C). Furthermore, LDH release was increased to 257% compared with the control (Fig. 1D). A significant increase in apoptotic cells following GLU treatment was observed using flow cytometry (Fig. 2A).

Subsequently, the effect of MDZ was evaluated, demonstrating a reduced cytotoxicity and apoptosis in vitro. MDZ reduced neuronal death and LDH release, and the protective effect was concentration-dependent (Fig. 1C and D), reaching ascending aorta and next with 4% paraformaldehyde. Neurons cultured in vitro were also subjected to immunofluorescence staining. Sections of terminally anesthetized tMCAO rats were cut (10-20 μm thickness) using a cryomicrotome and incubated with 3% goat serum (R&D Systems, Inc., Minneapolis, MN, USA) at 37°C for 40 min. Sections were then incubated with rabbit polyclonal primary antibody against RNA binding fox-1 homolog 3 (1:500; cat. no. ab177487; Abcam) or rat polyclonal primary antibody against neuron filament protein (1:500; cat. no. ab4666; Abcam) and Alzheimer-associated neuronal thread protein (1:500; cat. no. ab49385; Abcam) overnight at 4°C, followed by incubation with secondary antibody (Alexa Fluor 568-donkey anti-mouse immunoglobulin G; 1:1,000; cat. no. ab175700; Abcam) for 2 h at 25°C. Subsequently, nuclei were counterstained using DAPI (Abcam) at room temperature for 20 min. The stained sections were examined with a Leica fluorescence microscope (Leica Microsystems GmbH, Wetzlar, Germany) (38,39). The number of rats used for each group was 10.

Behavioral analysis. The BBB behavior score was used to assess the effect of MDZ on behavior of tMCAO rats (39). Rats were divided into four groups as described above. The assessment was performed at 0, 24 and 72 h following treatment with MDZ. Movement, balance and coordination of limbs, joints, and the whole body of rats were assessed and scored 0-21. Scoring 0-7 points indicated that rats exhibited few or no hindlimb joint movements, 8-14 points indicated ataxic gait and 15-21 points indicated that rats could perform fine movements including toe and tail movements.

Statistical analysis. Statistical analysis was performed using SPSS 13.0 software package (SPSS, Inc., Chicago, IL, USA). Results are expressed as the mean ± standard deviation, and one-way analysis of variance with Dunnett's t-test was used to evaluate significance. P<0.05 was considered to indicate a statistically significant difference.
an optimal effect at 0.7 mg/ml. At this concentration, neuron density was close to the density of the control group, with LDH release of 134%, and was thus considerably reduced compared with group 2. Furthermore, flow cytometry...
results revealed that the effect of MDZ on apoptosis (Fig. 2) was also significant, since GLU increased apoptosis from 3.8 to 16.9%, but apoptosis was reduced to ~5.8% following MDZ addition.

MDZ protects against GLU-induced changes in apoptosis-associated gene expression. Next, the anti-apoptotic mechanism of MDZ treatment was investigated. p53 and caspase3 protein expression were noticeably increased following GLU treatment, which may increase cell apoptosis, and the expression of these proteins was significantly inhibited following MDZ treatment (Fig. 3A). Furthermore, BCL-2 gene expression was inhibited, and the expression of the apoptosis promoter gene Bax was increased following GLU treatment. MDZ also inhibited this effect (Fig. 3B). The PCR results confirmed the western blotting results, and the difference in the expression of apoptosis-associated genes between experimental groups was statistically significant (P<0.05; Fig. 3C). Therefore, GLU induced the expression of p53, caspase-3 and Bax, and inhibited Bcl-2 expression, while MDZ treatment reversed these effects.

MDZ reduces LDH release from brain tissue into the serum. Clinical use of MDZ primarily occurs through peripheral intravenous injection, since MDZ passes through the blood-brain barrier to exert its effects relatively quickly. The involvement of MDZ in the reduction of cytotoxicity in peripheral blood vessels or brain tissue was confirmed by animal experiments. LDH concentrations in the peripheral plasma and brain tissue were measured in different tMCAO experimental animal groups. The results revealed that serum LDH concentration in the tMCAO animal model significantly increased from 502±24
to 1,866±71 U/l, and decreased following MDZ treatment in a dose-dependent manner (Fig. 4A). LDH concentration in the brain tissue decreased from 11,073±1,631 to 2,337±276 U/l in the tMCAO animal model, and increased with MDZ treatment in a dose-dependent manner (Fig. 4B).

MDZ protects neurons from tMCAO damage in the ischemic core and boundary zone. TTC staining in rat brain tissue revealed that the tMCAO experimental animal model was successfully constructed in the present study, as demonstrated by the ischemic and boundary areas in rat brain tissue, which were consistent with the physiological characteristics of cerebral infarction (Fig. 5A). After 24 and 72 h, the brain of the corresponding treated animals was subjected to morphological analysis and histological staining. The results of toluidine blue staining revealed that the number of neuron in the tMCAO experimental animals was decreased compared with the Sham group, but was increased following MDZ treatment compared with the tMCAO + vehicle group, in a dose-dependent manner (Fig. 5B). Immunofluorescent staining showed similar results: tMCAO produced a remarkable neuronal damage, while MDZ could significantly play a role in protecting neurons. Furthermore, 5 mg/kg achieved improved results compared with 2 mg/kg MDZ (Fig. 5C). Furthermore, the staining results revealed that this effect occurred in the boundary core. The number of neurons in the boundary core also increased under MDZ treatment. At 24 and 72 h, neuron density in the ischemic and boundary areas was statistically analyzed. The results revealed a clear increase in cell density following MDZ treatment compared with the tMCAO, although this density was not considerably different between 24 and 72 h (Fig. 5D and E). In the ischemic core, cell density was decreased from 1.08±0.11x10^3 to 0.31±0.03x10^3 cells/mm^2 in tMCAO rats treated with the vehicle, and increased to 0.74±0.08x10^3 cells/mm^2 following 5 mg/kg MDZ treatment within 24 h. Furthermore, in the boundary zone, MDZ achieved a similar effect; increasing cell density from 0.42±0.02x10^3 to 0.83±0.08x10^3 cells/mm^2. The behavior of tMCAO rats was also analyzed. The BBB method was used to assess rats’ behavior, including movement, coordination and fine movement of the hind limbs. The rats in the control group and sham group were all given a score of 21. Following tMCAO operation all rats were assessed at 7-10. A total of 3 rats were assessed 12-14 following 24 h of treatment with MDZ (2 mg/kg) and only one of them scored 17 following 72 h of treatment with MDZ (2 mg/kg). In addition, in the MDZ (5 mg/kg) group only two rats scored 16 at 24 h and 17 and 18 at 72 h following treatment with MDZ (data not shown). The results indicate that BBB scores of behaviors improved in certain rats, but not all following treatment with MDZ.

Discussion

Apoptosis is not only the main pathological change following ischemic cerebral infarction, but is also the main cause of poor prognosis. Cytotoxicity mediated by cytotoxic factors also damage neurons to a certain extent. However, there is no effective anti-apoptotic drug treatment against cerebral infarction currently being used in clinical practice (41). In the present study, the involvement of MDZ in the regulation of apoptosis was investigated in an attempt to identify an optimal dose.

The results revealed that MDZ protected rat cortical neurons from GLU-induced tMCAO models leading to neuronal damage. This protective effect was achieved by inhibiting apoptosis and reducing LDH release. LDH levels in the serum and brain tissue reflected the rapid release of LDH from neurons and released from the brain tissue into the peripheral plasma to inhibit cytotoxicity. MDZ inhibited the release of LDH and simultaneously reduced its release from the brain tissue to the peripheral plasma to inhibit cytotoxicity. Reducing Bcl-2 activity and increasing the expression of p53, caspase-3 and Bax are potential mechanisms to regulate apoptosis. As aforementioned, GLU oxidative toxicity serves a key function in the development and progression of neuronal death induced by cerebral ischemia. MDZ has previously been demonstrated to inhibit the apoptosis of astrocytes (20). Consistent with previous studies, the results of the present study suggested that MDZ increased Bcl-2 activation and inhibited apoptosis by decreasing the expression of p53, caspase-3 and Bax. In addition, MDZ inhibited LDH release to reduce cytotoxicity and apoptosis. MDZ treatment in the tMCAO model also reduced neuronal damage.

The results of the present study did not show a significant difference between 24 and 72 h, suggesting that MDZ had a rapid and prolonged neuroprotective effect. In other words, MDZ achieved its effect within 24 h, protecting neurons by reducing the cytotoxic effect and apoptosis, and

Figure 4. MDZ reduced LDH release into serum from brain tissue. (A) LDH serum levels and (B) brain LDH levels were detected in the sham and tMCAO groups. The concentration of MDZ used in these experiments was 0.7 mg/l. Results are expressed as mean ± standard deviation. *P<0.05 and **P<0.01, with comparisons indicated by lines. MDZ, midazolam; LDH, lactate dehydrogenase; tMCAO, transient middle cerebral artery occlusion; Veh, vehicle.
this effect increased with MDZ concentration. The ability of MDZ to rapidly cross the blood-brain barrier results in a rapid response to treatment, fewer contraindications and no withdrawal symptoms, providing a foundation for the clinical application against cerebral infarction (41). The present study also investigated the optimum MDZ concentration in vitro, and demonstrated that MDZ achieved optimal neuroprotective effects at 0.7 mg/l. However, the ideal administration route and dose to achieve a local 0.7 mg/l concentration in the brain requires further study.

The present study demonstrated that the neuroprotective function of MDZ was achieved by reducing LDH release and regulating the expression of apoptosis-associated genes. The inhibition of astrocyte apoptosis due to oxidative glucose deprivation has been demonstrated to be associated with the Janus kinase 2-signaling transducer and activator of transcription 3 signaling pathway (20). However, this aspect was not analyzed in the present study. In addition, MDZ appeared potentially effective in ameliorating behavioral abnormalities of rats. Therefore, the effect of MDZ on behavioral abnormalities and the mechanisms underlying its inhibition of GLU-induced LDH release and neuronal apoptosis require further study.

In conclusion, MDZ achieves its neuroprotective effects by inhibiting neuronal apoptosis, providing a potential novel treatment for stroke and may improve prognosis.
Figure 5. Continued. (D) Neuron density in the ischemic and boundary core after 24 h. (E) Similar results were obtained after 72 h. Results are expressed as the mean ± standard deviation. *P<0.05 and **P<0.01, with comparisons indicated by lines. MDZ, midazolam; tMCAO, transient middle cerebral artery occlusion; Veh, vehicle.

Acknowledgements

Not applicable.

Funding

The present study was supported by the 2016 Cultivation Fund of Hainan Medical University (grant no. HY2016-07) and the Industry Research Project of Hainan Health and Family Planning Commission (grant no. 1601032054A2001).

Availability of data and materials

The analyzed data sets generated during the study are available from the corresponding author on reasonable request.

Authors' contributions

HY took part in all experiments and was the major contributor in writing the manuscript. XW completed the cell experiments and took part in data analysis. FK was responsible for the cell culture and took part in data analysis. ZC helped complete the cell experiments and other experiments in vivo. YM took part in animal experiments and manuscript writing. MD was in charge of the overall planning and gave substantial advice for experiments and manuscript. All authors read and approved the final manuscript.

Ethics approval and consent to participate

All animal procedures followed the Guide for the Care and Use of Laboratory Animals and were approved by the Institutional Clinical Experiments Committee of the Second Affiliated Hospital of Hainan Medical University (Haikou, China).

Patient consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

References

