Open Access

Cardiovascular diseases related to ionizing radiation: The risk of low-dose exposure (Review)

  • Authors:
    • Bjorn Baselet
    • Charlotte Rombouts
    • Abderrafi Mohammed Benotmane
    • Sarah Baatout
    • An Aerts
  • View Affiliations

  • Published online on: October 17, 2016     https://doi.org/10.3892/ijmm.2016.2777
  • Pages: 1623-1641
  • Copyright: © Baselet et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Traditionally, non-cancer diseases are not considered as health risks following exposure to low doses of ionizing radiation. Indeed, non-cancer diseases are classified as deterministic tissue reactions, which are characterized by a threshold dose. It is judged that below an absorbed dose of 100 mGy, no clinically relevant tissue damage occurs, forming the basis for the current radiation protection system concerning non-cancer effects. Recent epidemiological findings point, however, to an excess risk of non-cancer diseases following exposure to lower doses of ionizing radiation than was previously thought. The evidence is the most sound for cardiovascular disease (CVD) and cataract. Due to limited statistical power, the dose-risk relationship is undetermined below 0.5 Gy; however, if this relationship proves to be without a threshold, it may have considerable impact on current low‑dose health risk estimates. In this review, we describe the CVD risk related to low doses of ionizing radiation, the clinical manifestation and the pathology of radiation-induced CVD, as well as the importance of the endothelium models in CVD research as a way forward to complement the epidemiological data with the underlying biological and molecular mechanisms.

References

1 

Stewart JR and Fajardo LF: Radiation-induced heart disease. Clinical and experimental aspects. Radiol Clin North Am. 9:511–531. 1971.PubMed/NCBI

2 

Stewart FA: Mechanisms and dose-response relationships for radiation-induced cardiovascular disease. Ann ICRP. 41:72–79. 2012. View Article : Google Scholar : PubMed/NCBI

3 

Schultz-Hector S and Trott KR: Radiation-induced cardiovascular diseases: Is the epidemiologic evidence compatible with the radiobiologic data? Int J Radiat Oncol Biol Phys. 67:10–18. 2007. View Article : Google Scholar

4 

Clarke M, Collins R, Darby S, Davies C, Elphinstone P, Evans V, Godwin J, Gray R, Hicks C, James S, et al Early Breast Cancer Trialists' Collaborative Group (EBCTCG): Effects of radiotherapy and of differences in the extent of surgery for early breast cancer on local recurrence and 15-year survival: An overview of the randomised trials. Lancet. 366:2087–2106. 2005. View Article : Google Scholar : PubMed/NCBI

5 

Darby SC, Cutter DJ, Boerma M, Constine LS, Fajardo LF, Kodama K, Mabuchi K, Marks LB, Mettler FA, Pierce LJ, et al: Radiation-related heart disease: Current knowledge and future prospects. Int J Radiat Oncol Biol Phys. 76:656–665. 2010. View Article : Google Scholar : PubMed/NCBI

6 

Darby SC, McGale P, Taylor CW and Peto R: Long-term mortality from heart disease and lung cancer after radiotherapy for early breast cancer: Prospective cohort study of about 300,000 women in US SEER cancer registries. Lancet Oncol. 6:557–565. 2005. View Article : Google Scholar : PubMed/NCBI

7 

McGale P, Darby SC, Hall P, Adolfsson J, Bengtsson NO, Bennet AM, Fornander T, Gigante B, Jensen MB, Peto R, et al: Incidence of heart disease in 35,000 women treated with radiotherapy for breast cancer in Denmark and Sweden. Radiother Oncol. 100:167–175. 2011. View Article : Google Scholar : PubMed/NCBI

8 

Carr ZA, Land CE, Kleinerman RA, Weinstock RW, Stovall M, Griem ML and Mabuchi K: Coronary heart disease after radiotherapy for peptic ulcer disease. Int J Radiat Oncol Biol Phys. 61:842–850. 2005. View Article : Google Scholar : PubMed/NCBI

9 

Advisory Group on Ionising Radiation A: Circulatory disease risk. Report of the independent Advisory Group on Ionising Radiation. Health Protection Agency; London: 2010

10 

Yusuf SW, Sami S and Daher IN: Radiation-induced heart disease: A clinical update. Cardiol Res Pract. 2011:3176592011.PubMed/NCBI

11 

Schweizer E: Über spezifische Röntgenschädigungen des Herzmuskels. Strahlentherapie. 18:812–828. 1924.In German.

12 

Aleman BM, van den Belt-Dusebout AW, Klokman WJ, Van't Veer MB, Bartelink H and van Leeuwen FE: Long-term cause-specific mortality of patients treated for Hodgkin's disease. J Clin Oncol. 21:3431–3439. 2003. View Article : Google Scholar : PubMed/NCBI

13 

Hoppe RT: Hodgkin's disease: Complications of therapy and excess mortality. Ann Oncol. 8(Suppl 1): 115–118. 1997. View Article : Google Scholar : PubMed/NCBI

14 

Ng AK, Bernardo MP, Weller E, Backstrand KH, Silver B, Marcus KC, Tarbell NJ, Friedberg J, Canellos GP and Mauch PM: Long-term survival and competing causes of death in patients with early-stage Hodgkin's disease treated at age 50 or younger. J Clin Oncol. 20:2101–2108. 2002. View Article : Google Scholar : PubMed/NCBI

15 

Swerdlow AJ, Higgins CD, Smith P, Cunningham D, Hancock BW, Horwich A, Hoskin PJ, Lister A, Radford JA, Rohatiner AZ and Linch DC: Myocardial infarction mortality risk after treatment for Hodgkin disease: A collaborative British cohort study. J Natl Cancer Inst. 99:206–214. 2007. View Article : Google Scholar : PubMed/NCBI

16 

Darby SC, Ewertz M, McGale P, Bennet AM, Blom-Goldman U, Brønnum D, Correa C, Cutter D, Gagliardi G, Gigante B, et al: Risk of ischemic heart disease in women after radiotherapy for breast cancer. N Engl J Med. 368:987–998. 2013. View Article : Google Scholar : PubMed/NCBI

17 

Ozasa K, Shimizu Y, Sakata R, Sugiyama H, Grant EJ, Soda M, Kasagi F and Suyama A: Risk of cancer and non-cancer diseases in the atomic bomb survivors. Radiat Prot Dosimetry. 146:272–275. 2011. View Article : Google Scholar : PubMed/NCBI

18 

Takahashi I, Abbott RD, Ohshita T, Takahashi T, Ozasa K, Akahoshi M, Fujiwara S, Kodama K and Matsumoto M: A prospective follow-up study of the association of radiation exposure with fatal and non-fatal stroke among atomic bomb survivors in Hiroshima and Nagasaki 1980–2003. BMJ Open. 2:e0006542012. View Article : Google Scholar

19 

Preston DL, Shimizu Y, Pierce DA, Suyama A and Mabuchi K: Studies of mortality of atomic bomb survivors. Report 13: Solid cancer and noncancer disease mortality: 1950–1997. Radiat Res. 160:381–407. 2003. View Article : Google Scholar : PubMed/NCBI

20 

Shimizu Y, Pierce DA, Preston DL and Mabuchi K: Studies of the mortality of atomic bomb survivors. Report 12, part II. Noncancer mortality: 1950–1990. Radiat Res. 152:374–389. 1999. View Article : Google Scholar : PubMed/NCBI

21 

Shimizu Y, Kodama K, Nishi N, Kasagi F, Suyama A, Soda M, Grant EJ, Sugiyama H, Sakata R, Moriwaki H, et al: Radiation exposure and circulatory disease risk: Hiroshima and Nagasaki atomic bomb survivor data, 1950–2003. BMJ. 340:b53492010. View Article : Google Scholar

22 

Little MP, Azizova TV, Bazyka D, Bouffler SD, Cardis E, Chekin S, Chumak VV, Cucinotta FA, de Vathaire F, Hall P, et al: Comment on 'dose-responses from multi-model inference for the non-cancer disease mortality of atomic bomb survivors' (Radiat. Environ. Biophys (2012) 51:165–178) by Schöllnberger et al. Radiat Environ Biophys. 52:157–159. 2013. View Article : Google Scholar : PubMed/NCBI

23 

Schöllnberger H, Ozasa K, Neff F and Kaiser JC: Cardiovascular disease mortality of A-bomb survivors and the healthy survivor selection effect. Radiat Prot Dosimetry. 166:320–323. 2015. View Article : Google Scholar : PubMed/NCBI

24 

Vrijheid M, Cardis E, Ashmore P, Auvinen A, Bae JM, Engels H, Gilbert E, Gulis G, Habib R, Howe G, et al: Mortality from diseases other than cancer following low doses of ionizing radiation: Results from the 15-Country Study of nuclear industry workers. Int J Epidemiol. 36:1126–1135. 2007. View Article : Google Scholar : PubMed/NCBI

25 

Ivanov VK, Maksioutov MA, Chekin SY, Petrov AV, Biryukov AP, Kruglova ZG, Matyash VA, Tsyb AF, Manton KG and Kravchenko JS: The risk of radiation-induced cerebrovascular disease in Chernobyl emergency workers. Health Phys. 90:199–207. 2006. View Article : Google Scholar : PubMed/NCBI

26 

Muirhead CR, O'Hagan JA, Haylock RG, Phillipson MA, Willcock T, Berridge GL and Zhang W: Mortality and cancer incidence following occupational radiation exposure: Third analysis of the National Registry for Radiation Workers. Br J Cancer. 100:206–212. 2009. View Article : Google Scholar : PubMed/NCBI

27 

Ashmore JP, Krewski D, Zielinski JM, Jiang H, Semenciw R and Band PR: First analysis of mortality and occupational radiation exposure based on the National Dose Registry of Canada. Am J Epidemiol. 148:564–574. 1998. View Article : Google Scholar : PubMed/NCBI

28 

Rajaraman P, Doody MM, Yu CL, Preston DL, Miller JS, Sigurdson AJ, Freedman DM, Alexander BH, Little MP, Miller DL and Linet MS: Incidence and mortality risks for circulatory diseases in US radiologic technologists who worked with fluoroscopically guided interventional procedures, 1994–2008. Occup Environ Med. 73:21–27. 2016. View Article : Google Scholar

29 

Azizova TV, Day RD, Wald N, Muirhead CR, O'Hagan JA, Sumina MV, Belyaeva ZD, Druzhinina MB, Teplyakov II, Semenikhina NG, et al: The 'clinic' medical-dosimetric database of Mayak production association workers: Structure, characteristics and prospects of utilization. Health Phys. 94:449–458. 2008. View Article : Google Scholar : PubMed/NCBI

30 

Azizova TV, Muirhead CR, Druzhinina MB, Grigoryeva ES, Vlasenko EV, Sumina MV, O'Hagan JA, Zhang W, Haylock RG and Hunter N: Cardiovascular diseases in the cohort of workers first employed at Mayak PA in 1948–1958. Radiat Res. 174:155–168. 2010. View Article : Google Scholar : PubMed/NCBI

31 

Azizova TV, Muirhead CR, Moseeva MB, Grigoryeva ES, Vlasenko EV, Hunter N, Haylock RG and O'Hagan JA: Ischemic heart disease in nuclear workers first employed at the Mayak PA in 1948–1972. Health Phys. 103:3–14. 2012. View Article : Google Scholar : PubMed/NCBI

32 

Simonetto C, Azizova TV, Grigoryeva ES, Kaiser JC, Schöllnberger H and Eidemüller M: Ischemic heart disease in workers at Mayak PA: Latency of incidence risk after radiation exposure. PLoS One. 9:e963092014. View Article : Google Scholar : PubMed/NCBI

33 

Azizova TV, Grigoryeva ES, Haylock RG, Pikulina MV and Moseeva MB: Ischaemic heart disease incidence and mortality in an extended cohort of Mayak workers first employed in 1948–1982. Br J Radiol. 88:201501692015. View Article : Google Scholar

34 

Azizova TV, Haylock RG, Moseeva MB, Bannikova MV and Grigoryeva ES: Cerebrovascular diseases incidence and mortality in an extended Mayak Worker Cohort 1948–1982. Radiat Res. 182:529–544. 2014. View Article : Google Scholar : PubMed/NCBI

35 

Simonetto C, Schöllnberger H, Azizova TV, Grigoryeva ES, Pikulina MV and Eidemüller M: Cerebrovascular Diseases in Workers at Mayak PA: The Difference in Radiation Risk between Incidence and Mortality. PLoS One. 10:e01259042015. View Article : Google Scholar : PubMed/NCBI

36 

Little MP, Azizova TV, Bazyka D, Bouffler SD, Cardis E, Chekin S, Chumak VV, Cucinotta FA, de Vathaire F, Hall P, et al: Systematic review and meta-analysis of circulatory disease from exposure to low-level ionizing radiation and estimates of potential population mortality risks. Environ Health Perspect. 120:1503–1511. 2012. View Article : Google Scholar : PubMed/NCBI

37 

Schöllnberger H, Kaiser JC, Jacob P and Walsh L: Dose-responses from multi-model inference for the non-cancer disease mortality of atomic bomb survivors. Radiat Environ Biophys. 51:165–178. 2012. View Article : Google Scholar : PubMed/NCBI

38 

Working Party on Research Implications on Health and Safety SotAGoE: Emerging evidence for radiation induced circulatory diseases. Radiation Protection No 158. EU Scientific Seminar 2008; Luxembourg. November 25, 2008;

39 

United Nations Scientific Committee on the Effects of Atomic Radiation: Annex B: Epidemiological evaluation of cardiovascular disease and other non-cancer diseases following radiation exposure. (UNSCEAR 2006 Report Vol. 1). United Nations; New York: 2006

40 

Montgomery JE and Brown JR: Metabolic biomarkers for predicting cardiovascular disease. Vasc Health Risk Manag. 9:37–45. 2013.PubMed/NCBI

41 

Brenner DJ, Doll R, Goodhead DT, Hall EJ, Land CE, Little JB, Lubin JH, Preston DL, Preston RJ, Puskin JS, et al: Cancer risks attributable to low doses of ionizing radiation: Assessing what we really know. Proc Natl Acad Sci USA. 100:13761–13766. 2003. View Article : Google Scholar : PubMed/NCBI

42 

Borghini A, Gianicolo EA, Picano E and Andreassi MG: Ionizing radiation and atherosclerosis: Current knowledge and future challenges. Atherosclerosis. 230:40–47. 2013. View Article : Google Scholar : PubMed/NCBI

43 

Seddon B, Cook A, Gothard L, Salmon E, Latus K, Underwood SR and Yarnold J: Detection of defects in myocardial perfusion imaging in patients with early breast cancer treated with radiotherapy. Radiother Oncol. 64:53–63. 2002. View Article : Google Scholar : PubMed/NCBI

44 

Chung E, Corbett JR, Moran JM, Griffith KA, Marsh RB, Feng M, Jagsi R, Kessler ML, Ficaro EC and Pierce LJ: Is there a dose-response relationship for heart disease with low-dose radiation therapy? Int J Radiat Oncol Biol Phys. 85:959–964. 2013. View Article : Google Scholar

45 

Januzzi JL Jr: Natriuretic peptide testing: A window into the diagnosis and prognosis of heart failure. Cleve Clin J Med. 73:149–152. 155–147. 2006. View Article : Google Scholar : PubMed/NCBI

46 

Palazzuoli A, Gallotta M, Quatrini I and Nuti R: Natriuretic peptides (BNP and NT-proBNP): Measurement and relevance in heart failure. Vasc Health Risk Manag. 6:411–418. 2010. View Article : Google Scholar : PubMed/NCBI

47 

Sabatine MS, Morrow DA, de Lemos JA, Omland T, Sloan S, Jarolim P, Solomon SD, Pfeffer MA and Braunwald E: Evaluation of multiple biomarkers of cardiovascular stress for risk prediction and guiding medical therapy in patients with stable coronary disease. Circulation. 125:233–240. 2012. View Article : Google Scholar :

48 

D'Errico MP, Grimaldi L, Petruzzelli MF, Gianicolo EA, Tramacere F, Monetti A, Placella R, Pili G, Andreassi MG, Sicari R, et al: N-terminal pro-B-type natriuretic peptide plasma levels as a potential biomarker for cardiac damage after radiotherapy in patients with left-sided breast cancer. Int J Radiat Oncol Biol Phys. 82:e239–e246. 2012. View Article : Google Scholar

49 

Preston RJ1, Boice JD Jr, Brill AB, Chakraborty R, Conolly R, Hoffman FO, Hornung RW, Kocher DC, Land CE, Shore RE and Woloschak GE: Uncertainties in estimating health risks associated with exposure to ionising radiation. J Radiol Prot. 33:573–588. 2013. View Article : Google Scholar : PubMed/NCBI

50 

Authors on behalf of ICRP; Stewart FA, Akleyev AV, Hauer-Jensen M, Hendry JH, Kleiman NJ, Macvittie TJ, Aleman BM, Edgar AB, Mabuchi K, Muirhead CR, et al: ICRP publication 118: ICRP statement on tissue reactions and early and late effects of radiation in normal tissues and organ - threshold doses for tissue reactions in a radiation protection context. Ann ICRP. 41:1–322. 2012. View Article : Google Scholar : PubMed/NCBI

51 

United Nations Scientific Committee on the Effects of Atomic Radiation: Annex A: Medical Radiation Exposures. (UNSCEAR 2008 Report Vol. 1). United Nations; New York: 2006

52 

Hall EJ and Brenner DJ: Cancer risks from diagnostic radiology. Br J Radiol. 81:362–378. 2008. View Article : Google Scholar : PubMed/NCBI

53 

Einstein AJ and Knuuti J: Cardiac imaging: Does radiation matter? Eur Heart J. 33:573–578. 2012. View Article : Google Scholar :

54 

Shapiro BP, Mergo PJ, Snipelisky DF, Kantor B and Gerber TC: Radiation dose in cardiac imaging: How should it affect clinical decisions? AJR Am J Roentgenol. 200:508–514. 2013. View Article : Google Scholar : PubMed/NCBI

55 

Miller JA, Raichlin E, Williamson EE, McCully RB, Pellikka PA, Hodge DO, Miller TD, Gibbons RJ and Araoz PA: Evaluation of coronary CTA Appropriateness Criteria in an academic medical center. J Am Coll Radiol. 7:125–131. 2010. View Article : Google Scholar : PubMed/NCBI

56 

Hendel RC, Cerqueira M, Douglas PS, Caruth KC, Allen JM, Jensen NC, Pan W, Brindis R and Wolk M: A multicenter assessment of the use of single-photon emission computed tomography myocardial perfusion imaging with appropriateness criteria. J Am Coll Cardiol. 55:156–162. 2010. View Article : Google Scholar : PubMed/NCBI

57 

Picano E and Vano E: The radiation issue in cardiology: The time for action is now. Cardiovasc Ultrasound. 9:352011. View Article : Google Scholar : PubMed/NCBI

58 

Paterick TE, Jan MF, Paterick ZR, Tajik AJ and Gerber TC: Cardiac imaging modalities with ionizing radiation: The role of informed consent. JACC Cardiovasc Imaging. 5:634–640. 2012. View Article : Google Scholar : PubMed/NCBI

59 

Halliburton SS and Schoenhagen P: Cardiovascular imaging with computed tomography: Responsible steps to balancing diagnostic yield and radiation exposure. JACC Cardiovasc Imaging. 3:536–540. 2010. View Article : Google Scholar : PubMed/NCBI

60 

Pernot E, Hall J, Baatout S, Benotmane MA, Blanchardon E, Bouffler S, El Saghire H, Gomolka M, Guertler A, Harms-Ringdahl M, et al: Ionizing radiation biomarkers for potential use in epidemiological studies. Mutat Res. 751:258–286. 2012. View Article : Google Scholar : PubMed/NCBI

61 

Adams MJ, Hardenbergh PH, Constine LS and Lipshultz SE: Radiation-associated cardiovascular disease. Crit Rev Oncol Hematol. 45:55–75. 2003. View Article : Google Scholar

62 

Adams MJ, Lipshultz SE, Schwartz C, Fajardo LF, Coen V and Constine LS: Radiation-associated cardiovascular disease: Manifestations and management. Semin Radiat Oncol. 13:346–356. 2003. View Article : Google Scholar : PubMed/NCBI

63 

Zaragoza C, Gomez-Guerrero C, Martin-Ventura JL, Blanco-Colio L, Lavin B, Mallavia B, Tarin C, Mas S, Ortiz A and Egido J: Animal models of cardiovascular diseases. J Biomed Biotechnol. 2011:4978412011. View Article : Google Scholar : PubMed/NCBI

64 

Zadelaar S, Kleemann R, Verschuren L, de Vries-Van der Weij J, van der Hoorn J, Princen HM and Kooistra T: Mouse models for atherosclerosis and pharmaceutical modifiers. Arterioscler Thromb Vasc Biol. 27:1706–1721. 2007. View Article : Google Scholar : PubMed/NCBI

65 

Ohashi R, Mu H, Yao Q and Chen C: Cellular and molecular mechanisms of atherosclerosis with mouse models. Trends Cardiovasc Med. 14:187–190. 2004. View Article : Google Scholar : PubMed/NCBI

66 

Yamashita A and Asada Y: A rabbit model of thrombosis on atherosclerotic lesions. J Biomed Biotechnol. 2011:4249292011. View Article : Google Scholar : PubMed/NCBI

67 

Scherer E, Streffer C and Trott KR: Radiopathology of Organs and Tissues. Springer Verlag; Berlin: 1991, View Article : Google Scholar

68 

Fajardo LF and Stewart JR: Experimental radiation-induced heart disease. I. Light microscopic studies. Am J Pathol. 59:299–316. 1970.PubMed/NCBI

69 

Gavin PR and Gillette EL: Radiation response of the canine cardiovascular system. Radiat Res. 90:489–500. 1982. View Article : Google Scholar : PubMed/NCBI

70 

Lauk S, Kiszel Z, Buschmann J and Trott KR: Radiation-induced heart disease in rats. Int J Radiat Oncol Biol Phys. 11:801–808. 1985. View Article : Google Scholar : PubMed/NCBI

71 

Lusis AJ: Atherosclerosis. Nature. 407:233–241. 2000. View Article : Google Scholar : PubMed/NCBI

72 

Virmani R, Kolodgie FD, Burke AP, Finn AV, Gold HK, Tulenko TN, Wrenn SP and Narula J: Atherosclerotic plaque progression and vulnerability to rupture: Angiogenesis as a source of intraplaque hemorrhage. Arterioscler Thromb Vasc Biol. 25:2054–2061. 2005. View Article : Google Scholar : PubMed/NCBI

73 

Mitchel RE, Hasu M, Bugden M, Wyatt H, Hildebrandt G, Chen YX, Priest ND and Whitman SC: Low-dose radiation exposure and protection against atherosclerosis in ApoE(−/−) mice: The influence of P53 heterozygosity. Radiat Res. 179:190–199. 2013. View Article : Google Scholar : PubMed/NCBI

74 

Stewart FA, Heeneman S, Te Poele J, Kruse J, Russell NS, Gijbels M and Daemen M: Ionizing radiation accelerates the development of atherosclerotic lesions in ApoE−/− mice and predisposes to an inflammatory plaque phenotype prone to hemorrhage. Am J Pathol. 168:649–658. 2006. View Article : Google Scholar : PubMed/NCBI

75 

Gabriels K, Hoving S, Seemann I, Visser NL, Gijbels MJ, Pol JF, Daemen MJ, Stewart FA and Heeneman S: Local heart irradiation of ApoE(−/−) mice induces microvascular and endocardial damage and accelerates coronary atherosclerosis. Radiother Oncol. 105:358–364. 2012. View Article : Google Scholar : PubMed/NCBI

76 

Hoving S, Heeneman S, Gijbels MJ, te Poele JA, Russell NS, Daemen MJ and Stewart FA: Single-dose and fractionated irradiation promote initiation and progression of atherosclerosis and induce an inflammatory plaque phenotype in ApoE(−/−) mice. Int J Radiat Oncol Biol Phys. 71:848–857. 2008. View Article : Google Scholar : PubMed/NCBI

77 

Mitchel RE, Hasu M, Bugden M, Wyatt H, Little MP, Gola A, Hildebrandt G, Priest ND and Whitman SC: Low-dose radiation exposure and atherosclerosis in ApoE−/− mice. Radiat Res. 175:665–676. 2011. View Article : Google Scholar : PubMed/NCBI

78 

Mancuso M, Pasquali E, Braga-Tanaka I III, Tanaka S, Pannicelli A, Giardullo P, Pazzaglia S, Tapio S, Atkinson MJ and Saran A: Acceleration of atherogenesis in ApoE−/− mice exposed to acute or low-dose-rate ionizing radiation. Oncotarget. 6:31263–31271. 2015.PubMed/NCBI

79 

Le Gallic C, Phalente Y, Manens L, Dublineau I, Benderitter M, Gueguen Y, Lehoux S and Ebrahimian TG: Chronic internal exposure to low dose 137Cs induces positive impact on the stability of atherosclerotic plaques by reducing inflammation in ApoE−/− mice. PLoS One. 10:e01285392015. View Article : Google Scholar

80 

Jeon YH, Kraus SG, Jowsey T and Glasgow NJ: The experience of living with chronic heart failure: A narrative review of qualitative studies. BMC Health Serv Res. 10:772010. View Article : Google Scholar : PubMed/NCBI

81 

Lauk S: Endothelial alkaline phosphatase activity loss as an early stage in the development of radiation-induced heart disease in rats. Radiat Res. 110:118–128. 1987. View Article : Google Scholar : PubMed/NCBI

82 

Schultz-Hector S: Radiation-induced heart disease: Review of experimental data on dose response and pathogenesis. Int J Radiat Biol. 61:149–160. 1992. View Article : Google Scholar : PubMed/NCBI

83 

Franken NA, Camps JA, van Ravels FJ, van der Laarse A, Pauwels EK and Wondergem J: Comparison of in vivo cardiac function with ex vivo cardiac performance of the rat heart after thoracic irradiation. Br J Radiol. 70:1004–1009. 1997. View Article : Google Scholar : PubMed/NCBI

84 

Seemann I, Gabriels K, Visser NL, Hoving S, te Poele JA, Pol JF, Gijbels MJ, Janssen BJ, van Leeuwen FW, Daemen MJ, et al: Irradiation induced modest changes in murine cardiac function despite progressive structural damage to the myocardium and microvasculature. Radiother Oncol. 103:143–150. 2012. View Article : Google Scholar

85 

Monceau V, Meziani L, Strup-Perrot C, Morel E, Schmidt M, Haagen J, Escoubet B, Dörr W and Vozenin MC: Enhanced sensitivity to low dose irradiation of ApoE−/− mice mediated by early pro-inflammatory profile and delayed activation of the TGFβ1 cascade involved in fibrogenesis. PLoS One. 8:e570522013. View Article : Google Scholar

86 

Hendry JH, Akahoshi M, Wang LS, Lipshultz SE, Stewart FA and Trott KR: Radiation-induced cardiovascular injury. Radiat Environ Biophys. 47:189–193. 2008. View Article : Google Scholar : PubMed/NCBI

87 

Little MP, Tawn EJ, Tzoulaki I, Wakeford R, Hildebrandt G, Paris F, Tapio S and Elliott P: A systematic review of epidemiological associations between low and moderate doses of ionizing radiation and late cardiovascular effects, and their possible mechanisms. Radiat Res. 169:99–109. 2008. View Article : Google Scholar

88 

Bhatti P, Sigurdson AJ and Mabuchi K: Can low-dose radiation increase risk of cardiovascular disease? Lancet. 372:697–699. 2008. View Article : Google Scholar : PubMed/NCBI

89 

Hildebrandt G: Non-cancer diseases and non-targeted effects. Mutat Res. 687:73–77. 2010. View Article : Google Scholar : PubMed/NCBI

90 

Hildebrandt G, Maggiorella L, Rödel F, Rödel V, Willis D and Trott KR: Mononuclear cell adhesion and cell adhesion molecule liberation after X-irradiation of activated endothelial cells in vitro. Int J Radiat Biol. 78:315–325. 2002. View Article : Google Scholar : PubMed/NCBI

91 

Sievert W, Trott KR, Azimzadeh O, Tapio S, Zitzelsberger H and Multhoff G: Late proliferating and inflammatory effects on murine microvascular heart and lung endothelial cells after irradiation. Radiother Oncol. 117:376–381. 2015. View Article : Google Scholar : PubMed/NCBI

92 

Hallahan DE, Virudachalam S and Kuchibhotla J: Nuclear factor kappaB dominant negative genetic constructs inhibit X-ray induction of cell adhesion molecules in the vascular endothelium. Cancer Res. 58:5484–5488. 1998.PubMed/NCBI

93 

Van Der Meeren A, Squiban C, Gourmelon P, Lafont H and Gaugler MH: Differential regulation by IL-4 and IL-10 of radiation-induced IL-6 and IL-8 production and ICAM-1 expression by human endothelial cells. Cytokine. 11:831–838. 1999. View Article : Google Scholar : PubMed/NCBI

94 

Milliat F, François A, Isoir M, Deutsch E, Tamarat R, Tarlet G, Atfi A, Validire P, Bourhis J, Sabourin JC and Benderitter M: Influence of endothelial cells on vascular smooth muscle cells phenotype after irradiation: Implication in radiation-induced vascular damages. Am J Pathol. 169:1484–1495. 2006. View Article : Google Scholar : PubMed/NCBI

95 

Hayashi T, Morishita Y, Khattree R, Misumi M, Sasaki K, Hayashi I, Yoshida K, Kajimura J, Kyoizumi S, Imai K, et al: Evaluation of systemic markers of inflammation in atomic-bomb survivors with special reference to radiation and age effects. FASEB J. 26:4765–4773. 2012. View Article : Google Scholar : PubMed/NCBI

96 

Wang J, Zheng H, Ou X, Fink LM and Hauer-Jensen M: Deficiency of microvascular thrombomodulin and upregulation of protease-activated receptor-1 in irradiated rat intestine: Possible link between endothelial dysfunction and chronic radiation fibrosis. Am J Pathol. 160:2063–2072. 2002. View Article : Google Scholar : PubMed/NCBI

97 

Azimzadeh O, Scherthan H, Sarioglu H, Barjaktarovic Z, Conrad M, Vogt A, Calzada-Wack J, Neff F, Aubele M, Buske C, et al: Rapid proteomic remodeling of cardiac tissue caused by total body ionizing radiation. Proteomics. 11:3299–3311. 2011. View Article : Google Scholar : PubMed/NCBI

98 

Azimzadeh O, Sievert W, Sarioglu H, Merl-Pham J, Yentrapalli R, Bakshi MV, Janik D, Ueffing M, Atkinson MJ, Multhoff G and Tapio S: Integrative proteomics and targeted transcriptomics analyses in cardiac endothelial cells unravel mechanisms of long-term radiation-induced vascular dysfunction. J Proteome Res. 14:1203–1219. 2015. View Article : Google Scholar : PubMed/NCBI

99 

Trott KR and Kamprad F: Radiobiological mechanisms of anti-inflammatory radiotherapy. Radiother Oncol. 51:197–203. 1999. View Article : Google Scholar : PubMed/NCBI

100 

Seegenschmiedt MH, Katalinic A, Makoski HB, Haase W, Gademann G and Hassenstein E: Radiotherapy of benign diseases: A pattern of care study in Germany. Strahlenther Onkol. 175:541–547. 1999.In German. View Article : Google Scholar : PubMed/NCBI

101 

Rödel F, Keilholz L, Herrmann M, Sauer R and Hildebrandt G: Radiobiological mechanisms in inflammatory diseases of low-dose radiation therapy. Int J Radiat Biol. 83:357–366. 2007. View Article : Google Scholar : PubMed/NCBI

102 

Kern PM, Keilholz L, Forster C, Hallmann R, Herrmann M and Seegenschmiedt MH: Low-dose radiotherapy selectively reduces adhesion of peripheral blood mononuclear cells to endothelium in vitro. Radiother Oncol. 54:273–282. 2000. View Article : Google Scholar : PubMed/NCBI

103 

Hirase T and Node K: Endothelial dysfunction as a cellular mechanism for vascular failure. Am J Physiol Heart Circ Physiol. 302:H499–H505. 2012. View Article : Google Scholar

104 

Flammer AJ and Lüscher TF: Three decades of endothelium research: From the detection of nitric oxide to the everyday implementation of endothelial function measurements in cardiovascular diseases. Swiss Med Wkly. 140:w131222010.PubMed/NCBI

105 

Triggle CR, Samuel SM, Ravishankar S, Marei I, Arunachalam G and Ding H: The endothelium: Influencing vascular smooth muscle in many ways. Can J Physiol Pharmacol. 90:713–738. 2012. View Article : Google Scholar : PubMed/NCBI

106 

van Hinsbergh VW: Endothelium - role in regulation of coagulation and inflammation. Semin Immunopathol. 34:93–106. 2012. View Article : Google Scholar

107 

Michiels C: Endothelial cell functions. J Cell Physiol. 196:430–443. 2003. View Article : Google Scholar : PubMed/NCBI

108 

Sandoo A, van Zanten JJ, Metsios GS, Carroll D and Kitas GD: The endothelium and its role in regulating vascular tone. Open Cardiovasc Med J. 4:302–312. 2010. View Article : Google Scholar

109 

Aird WC: Phenotypic heterogeneity of the endothelium: I. Structure, function, and mechanisms. Circ Res. 100:158–173. 2007. View Article : Google Scholar : PubMed/NCBI

110 

Aird WC: Phenotypic heterogeneity of the endothelium: II. Representative vascular beds. Circ Res. 100:174–190. 2007. View Article : Google Scholar : PubMed/NCBI

111 

Landmesser U, Hornig B and Drexler H: Endothelial function: A critical determinant in atherosclerosis? Circulation. 109(Suppl 1): II27–II33. 2004. View Article : Google Scholar : PubMed/NCBI

112 

Mudau M, Genis A, Lochner A and Strijdom H: Endothelial dysfunction: The early predictor of atherosclerosis. Cardiovasc J Afr. 23:222–231. 2012. View Article : Google Scholar : PubMed/NCBI

113 

Shah AM and Channon KM: Free radicals and redox signalling in cardiovascular disease. Heart. 90:486–487. 2004. View Article : Google Scholar : PubMed/NCBI

114 

Lum H and Roebuck KA: Oxidant stress and endothelial cell dysfunction. Am J Physiol Cell Physiol. 280:C719–C741. 2001.PubMed/NCBI

115 

Jaffe EA, Nachman RL, Becker CG and Minick CR: Culture of human endothelial cells derived from umbilical veins. Identification by morphologic and immunologic criteria. J Clin Invest. 52:2745–2756. 1973. View Article : Google Scholar : PubMed/NCBI

116 

Gimbrone MA Jr, Cotran RS and Folkman J: Human vascular endothelial cells in culture. Growth and DNA synthesis. J Cell Biol. 60:673–684. 1974. View Article : Google Scholar : PubMed/NCBI

117 

Bicknell R: Endothelial cell culture. Cambridge University Press; 1996, View Article : Google Scholar

118 

Edgell CJ, McDonald CC and Graham JB: Permanent cell line expressing human factor VIII-related antigen established by hybridization. Proc Natl Acad Sci USA. 80:3734–3737. 1983. View Article : Google Scholar : PubMed/NCBI

119 

Rombouts C, Aerts A, Beck M, De Vos WH, Van Oostveldt P, Benotmane MA and Baatout S: Differential response to acute low dose radiation in primary and immortalized endothelial cells. Int J Radiat Biol. 89:841–850. 2013. View Article : Google Scholar : PubMed/NCBI

120 

Dickson MA, Hahn WC, Ino Y, Ronfard V, Wu JY, Weinberg RA, Louis DN, Li FP and Rheinwald JG: Human keratinocytes that express hTERT and also bypass a p16(INK4a)-enforced mechanism that limits life span become immortal yet retain normal growth and differentiation characteristics. Mol Cell Biol. 20:1436–1447. 2000. View Article : Google Scholar : PubMed/NCBI

121 

Bouïs D, Hospers GA, Meijer C, Molema G and Mulder NH: Endothelium in vitro: A review of human vascular endothelial cell lines for blood vessel-related research. Angiogenesis. 4:91–102. 2001. View Article : Google Scholar

122 

Wallace CS and Truskey GA: Direct-contact co-culture between smooth muscle and endothelial cells inhibits TNF-alpha-mediated endothelial cell activation. Am J Physiol Heart Circ Physiol. 299:H338–H346. 2010. View Article : Google Scholar : PubMed/NCBI

123 

Rainger GE and Nash GB: Cellular pathology of atherosclerosis: Smooth muscle cells prime cocultured endothelial cells for enhanced leukocyte adhesion. Circ Res. 88:615–622. 2001. View Article : Google Scholar : PubMed/NCBI

124 

Dietrich F and Lelkes PI: Fine-tuning of a three-dimensional microcarrier-based angiogenesis assay for the analysis of endothelial-mesenchymal cell co-cultures in fibrin and collagen gels. Angiogenesis. 9:111–125. 2006. View Article : Google Scholar : PubMed/NCBI

125 

Vernon RB and Sage EH: A novel, quantitative model for study of endothelial cell migration and sprout formation within three-dimensional collagen matrices. Microvasc Res. 57:118–133. 1999. View Article : Google Scholar : PubMed/NCBI

126 

Acheva A, Aerts A, Rombouts C, Baatout S, Salomaa S, Manda K, Hildebrandt G and Kämäräinen M: Human 3-D tissue models in radiation biology: Current status and future perspectives. Int J Radiat Res. 12:81–98. 2014.

127 

Goel S, Duda DG, Xu L, Munn LL, Boucher Y, Fukumura D and Jain RK: Normalization of the vasculature for treatment of cancer and other diseases. Physiol Rev. 91:1071–1121. 2011. View Article : Google Scholar : PubMed/NCBI

128 

Zhang HP, Takayama K, Su B, Jiao XD, Li R and Wang JJ: Effect of sunitinib combined with ionizing radiation on endothelial cells. J Radiat Res (Tokyo). 52:1–8. 2011. View Article : Google Scholar

129 

Dudley AC: Tumor endothelial cells. Cold Spring Harb Perspect Med. 2:a0065362012. View Article : Google Scholar : PubMed/NCBI

130 

Jeggo P and Löbrich M: Radiation-induced DNA damage responses. Radiat Prot Dosimetry. 122:124–127. 2006. View Article : Google Scholar

131 

Bolus NE: Basic review of radiation biology and terminology. J Nucl Med Technol. 29:67–77. 2001.PubMed/NCBI

132 

Norbury CJ and Hickson ID: Cellular responses to DNA damage. Annu Rev Pharmacol Toxicol. 41:367–401. 2001. View Article : Google Scholar : PubMed/NCBI

133 

Clarke PR and Allan LA: Cell-cycle control in the face of damage - a matter of life or death. Trends Cell Biol. 19:89–98. 2009. View Article : Google Scholar : PubMed/NCBI

134 

Dikomey E, Dahm-Daphi J, Brammer I, Martensen R and Kaina B: Correlation between cellular radiosensitivity and non-repaired double-strand breaks studied in nine mammalian cell lines. Int J Radiat Biol. 73:269–278. 1998. View Article : Google Scholar : PubMed/NCBI

135 

Kuo LJ and Yang LX: Gamma-H2AX - a novel biomarker for DNA double-strand breaks. In Vivo. 22:305–309. 2008.PubMed/NCBI

136 

Stoneman VE and Bennett MR: Role of apoptosis in atherosclerosis and its therapeutic implications. Clin Sci (Lond). 107:343–354. 2004. View Article : Google Scholar

137 

Mercer J, Mahmoudi M and Bennett M: DNA damage, p53, apoptosis and vascular disease. Mutat Res. 621:75–86. 2007. View Article : Google Scholar : PubMed/NCBI

138 

Choy JC, Granville DJ, Hunt DW and McManus BM: Endothelial cell apoptosis: Biochemical characteristics and potential implications for atherosclerosis. J Mol Cell Cardiol. 33:1673–1690. 2001. View Article : Google Scholar : PubMed/NCBI

139 

Haimovitz-Friedman A, Kan CC, Ehleiter D, Persaud RS, McLoughlin M, Fuks Z and Kolesnick RN: Ionizing radiation acts on cellular membranes to generate ceramide and initiate apoptosis. J Exp Med. 180:525–535. 1994. View Article : Google Scholar : PubMed/NCBI

140 

Langley RE, Bump EA, Quartuccio SG, Medeiros D and Braunhut SJ: Radiation-induced apoptosis in microvascular endothelial cells. Br J Cancer. 75:666–672. 1997. View Article : Google Scholar : PubMed/NCBI

141 

Rödel F, Frey B, Capalbo G, Gaipl U, Keilholz L, Voll R, Hildebrandt G and Rödel C: Discontinuous induction of X-linked inhibitor of apoptosis in EA.hy.926 endothelial cells is linked to NF-κB activation and mediates the anti-inflammatory properties of low-dose ionising-radiation. Radiother Oncol. 97:346–351. 2010. View Article : Google Scholar

142 

Pluder F, Barjaktarovic Z, Azimzadeh O, Mörtl S, Krämer A, Steininger S, Sarioglu H, Leszczynski D, Nylund R, Hakanen A, et al: Low-dose irradiation causes rapid alterations to the proteome of the human endothelial cell line EA.hy926. Radiat Environ Biophys. 50:155–166. 2011. View Article : Google Scholar

143 

Yu E, Mercer J and Bennett M: Mitochondria in vascular disease. Cardiovasc Res. 95:173–182. 2012. View Article : Google Scholar : PubMed/NCBI

144 

Riley PA: Free radicals in biology: Oxidative stress and the effects of ionizing radiation. Int J Radiat Biol. 65:27–33. 1994. View Article : Google Scholar : PubMed/NCBI

145 

Yamamori T, Yasui H, Yamazumi M, Wada Y, Nakamura Y, Nakamura H and Inanami O: Ionizing radiation induces mitochondrial reactive oxygen species production accompanied by upregulation of mitochondrial electron transport chain function and mitochondrial content under control of the cell cycle checkpoint. Free Radic Biol Med. 53:260–270. 2012. View Article : Google Scholar : PubMed/NCBI

146 

Bernardi P: The mitochondrial permeability transition pore: A mystery solved? Front Physiol. 4:952013. View Article : Google Scholar : PubMed/NCBI

147 

Leach JK, Van Tuyle G, Lin PS, Schmidt-Ullrich R and Mikkelsen RB: Ionizing radiation-induced, mitochondria-dependent generation of reactive oxygen/nitrogen. Cancer Res. 61:3894–3901. 2001.PubMed/NCBI

148 

Prithivirajsingh S, Story MD, Bergh SA, Geara FB, Ang KK, Ismail SM, Stevens CW, Buchholz TA and Brock WA: Accumulation of the common mitochondrial DNA deletion induced by ionizing radiation. FEBS Lett. 571:227–232. 2004. View Article : Google Scholar : PubMed/NCBI

149 

Wang L, Kuwahara Y, Li L, Baba T, Shin RW, Ohkubo Y, Ono K and Fukumoto M: Analysis of Common Deletion (CD) and a novel deletion of mitochondrial DNA induced by ionizing radiation. Int J Radiat Biol. 83:433–442. 2007. View Article : Google Scholar : PubMed/NCBI

150 

Schilling-Tóth B, Sándor N, Kis E, Kadhim M, Sáfrány G and Hegyesi H: Analysis of the common deletions in the mitochondrial DNA is a sensitive biomarker detecting direct and non-targeted cellular effects of low dose ionizing radiation. Mutat Res. 716:33–39. 2011. View Article : Google Scholar : PubMed/NCBI

151 

Barjaktarovic Z, Schmaltz D, Shyla A, Azimzadeh O, Schulz S, Haagen J, Dörr W, Sarioglu H, Schäfer A, Atkinson MJ, et al: Radiation-induced signaling results in mitochondrial impairment in mouse heart at 4 weeks after exposure to X-rays. PLoS One. 6:e278112011. View Article : Google Scholar : PubMed/NCBI

152 

Barjaktarovic Z, Shyla A, Azimzadeh O, Schulz S, Haagen J, Dörr W, Sarioglu H, Atkinson MJ, Zischka H and Tapio S: Ionising radiation induces persistent alterations in the cardiac mitochondrial function of C57BL/6 mice 40 weeks after local heart exposure. Radiother Oncol. 106:404–410. 2013. View Article : Google Scholar : PubMed/NCBI

153 

Azimzadeh O, Sievert W, Sarioglu H, Yentrapalli R, Barjaktarovic Z, Sriharshan A, Ueffing M, Janik D, Aichler M, Atkinson MJ, et al: PPAR alpha: A novel radiation target in locally exposed Mus musculus heart revealed by quantitative proteomics. J Proteome Res. 12:2700–2714. 2013. View Article : Google Scholar : PubMed/NCBI

154 

Barjaktarovic Z, Kempf SJ, Sriharshan A, Merl-Pham J, Atkinson MJ and Tapio S: Ionizing radiation induces immediate protein acetylation changes in human cardiac microvascular endothelial cells. J Radiat Res (Tokyo). 56:623–632. 2015. View Article : Google Scholar

155 

Vávrová J and Rezáčová M: The importance of senescence in ionizing radiation-induced tumour suppression. Folia Biol (Praha). 57:41–46. 2011.

156 

Sabatino L, Picano E and Andreassi MG: Telomere shortening and ionizing radiation: A possible role in vascular dysfunction? Int J Radiat Biol. 88:830–839. 2012. View Article : Google Scholar : PubMed/NCBI

157 

Kurz DJ, Decary S, Hong Y, Trivier E, Akhmedov A and Erusalimsky JD: Chronic oxidative stress compromises telomere integrity and accelerates the onset of senescence in human endothelial cells. J Cell Sci. 117:2417–2426. 2004. View Article : Google Scholar : PubMed/NCBI

158 

Campisi J and d'Adda di Fagagna F: Cellular senescence: When bad things happen to good cells. Nat Rev Mol Cell Biol. 8:729–740. 2007. View Article : Google Scholar : PubMed/NCBI

159 

Oh CW, Bump EA, Kim JS, Janigro D and Mayberg MR: Induction of a senescence-like phenotype in bovine aortic endothelial cells by ionizing radiation. Radiat Res. 156:232–240. 2001. View Article : Google Scholar : PubMed/NCBI

160 

Panganiban RA, Mungunsukh O and Day RM: X-irradiation induces ER stress, apoptosis, and senescence in pulmonary artery endothelial cells. Int J Radiat Biol. 89:656–667. 2013. View Article : Google Scholar

161 

Igarashi K, Sakimoto I, Kataoka K, Ohta K and Miura M: Radiation-induced senescence-like phenotype in proliferating and plateau-phase vascular endothelial cells. Exp Cell Res. 313:3326–3336. 2007. View Article : Google Scholar : PubMed/NCBI

162 

Kim KS, Kim JE, Choi KJ, Bae S and Kim DH: Characterization of DNA damage-induced cellular senescence by ionizing radiation in endothelial cells. Int J Radiat Biol. 90:71–80. 2014. View Article : Google Scholar

163 

Suzuki K, Mori I, Nakayama Y, Miyakoda M, Kodama S and Watanabe M: Radiation-induced senescence-like growth arrest requires TP53 function but not telomere shortening. Radiat Res. 155:248–253. 2001. View Article : Google Scholar

164 

Yentrapalli R, Azimzadeh O, Barjaktarovic Z, Sarioglu H, Wojcik A, Harms-Ringdahl M, Atkinson MJ, Haghdoost S and Tapio S: Quantitative proteomic analysis reveals induction of premature senescence in human umbilical vein endothelial cells exposed to chronic low-dose rate gamma radiation. Proteomics. 13:1096–1107. 2013. View Article : Google Scholar : PubMed/NCBI

165 

Yentrapalli R, Azimzadeh O, Sriharshan A, Malinowsky K, Merl J, Wojcik A, Harms-Ringdahl M, Atkinson MJ, Becker KF, Haghdoost S and Tapio S: The PI3K/Akt/mTOR pathway is implicated in the premature senescence of primary human endothelial cells exposed to chronic radiation. PLoS One. 8:e700242013. View Article : Google Scholar : PubMed/NCBI

166 

Rombouts C, Aerts A, Quintens R, Baselet B, El-Saghire H, Harms-Ringdahl M, Haghdoost S, Janssen A, Michaux A, Yentrapalli R, et al: Transcriptomic profiling suggests a role for IGFBP5 in premature senescence of endothelial cells after chronic low dose rate irradiation. Int J Radiat Biol. 90:560–574. 2014. View Article : Google Scholar : PubMed/NCBI

167 

Libby P, Ridker PM and Hansson GK: Progress and challenges in translating the biology of atherosclerosis. Nature. 473:317–325. 2011. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

December 2016
Volume 38 Issue 6

Print ISSN: 1107-3756
Online ISSN:1791-244X

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Baselet, B., Rombouts, C., Benotmane, A.M., Baatout, S., & Aerts, A. (2016). Cardiovascular diseases related to ionizing radiation: The risk of low-dose exposure (Review). International Journal of Molecular Medicine, 38, 1623-1641. https://doi.org/10.3892/ijmm.2016.2777
MLA
Baselet, B., Rombouts, C., Benotmane, A. M., Baatout, S., Aerts, A."Cardiovascular diseases related to ionizing radiation: The risk of low-dose exposure (Review)". International Journal of Molecular Medicine 38.6 (2016): 1623-1641.
Chicago
Baselet, B., Rombouts, C., Benotmane, A. M., Baatout, S., Aerts, A."Cardiovascular diseases related to ionizing radiation: The risk of low-dose exposure (Review)". International Journal of Molecular Medicine 38, no. 6 (2016): 1623-1641. https://doi.org/10.3892/ijmm.2016.2777