Open Access

Expression of the SOCS family in human chronic wound tissues: Potential implications for SOCS in chronic wound healing

  • Authors:
    • Yi Feng
    • Andrew J. Sanders
    • Fiona Ruge
    • Ceri-Ann Morris
    • Keith G. Harding
    • Wen G. Jiang
  • View Affiliations

  • Published online on: September 13, 2016     https://doi.org/10.3892/ijmm.2016.2733
  • Pages: 1349-1358
  • Copyright : © Feng et al. This is an open access article distributed under the terms of Creative Commons Attribution License [CC BY 4.0].

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Cytokines play important roles in the wound healing process through various signalling pathways. The JAK-STAT pathway is utilised by most cytokines for signal transduction and is regulated by a variety of molecules, including suppressor of cytokine signalling (SOCS) proteins. SOCS are associated with inflammatory diseases and have an impact on cytokines, growth factors and key cell types involved in the wound‑healing process. SOCS, a negative regulator of cytokine signalling, may hold the potential to regulate cytokine‑induced signalling in the chronic wound‑healing process. Wound edge tissues were collected from chronic venous leg ulcer patients and classified as non-healing and healing wounds. The expression pattern of seven SOCSs members, at the transcript and protein level, were examined in these tissues using qPCR and immunohistochemistry. Significantly higher levels of SOCS3 (P=0.0284) and SOCS4 (P=0.0376) in non-healing chronic wounds compared to the healing/healed chronic wounds were observed at the transcript level. Relocalisation of SOCS3 protein in the non-healing wound environment was evident in the investigated chronic biopsies. Thus, the results show that the expression of SOCS transcript indicated that SOCS members may act as a prognostic biomarker of chronic wounds.

References

1 

Harding KG, Morris HL and Patel GK: Science, medicine and the future: healing chronic wounds. BMJ. 324:160–163. 2002. View Article : Google Scholar : PubMed/NCBI

2 

Behm B, Babilas P, Landthaler M and Schreml S: Cytokines, chemokines and growth factors in wound healing. J Eur Acad Dermatol Venereol. 26:812–820. 2012. View Article : Google Scholar : PubMed/NCBI

3 

Barrientos S, Stojadinovic O, Golinko MS, Brem H and Tomic-Canic M: Growth factors and cytokines in wound healing. Wound Repair Regen. 16:585–601. 2008. View Article : Google Scholar

4 

Igaz P, Tóth S and Falus A: Biological and clinical significance of the JAK-STAT pathway; lessons from knockout mice. Inflamm Res. 50:435–441. 2001. View Article : Google Scholar : PubMed/NCBI

5 

Rawlings JS, Rosler KM and Harrison DA: The JAK/STAT signaling pathway. J Cell Sci. 117:1281–1283. 2004. View Article : Google Scholar : PubMed/NCBI

6 

Wormald S and Hilton DJ: Inhibitors of cytokine signal transduction. J Biol Chem. 279:821–824. 2004. View Article : Google Scholar

7 

Starr R, Willson TA, Viney EM, Murray LJ, Rayner JR, Jenkins BJ, Gonda TJ, Alexander WS, Metcalf D, Nicola NA, et al: A family of cytokine-inducible inhibitors of signalling. Nature. 387:917–921. 1997. View Article : Google Scholar : PubMed/NCBI

8 

Endo TA, Masuhara M, Yokouchi M, Suzuki R, Sakamoto H, Mitsui K, Matsumoto A, Tanimura S, Ohtsubo M, Misawa H, et al: A new protein containing an SH2 domain that inhibits JAK kinases. Nature. 387:921–924. 1997. View Article : Google Scholar : PubMed/NCBI

9 

Naka T, Narazaki M, Hirata M, Matsumoto T, Minamoto S, Aono A, Nishimoto N, Kajita T, Taga T, Yoshizaki K, et al: Structure and function of a new STAT-induced STAT inhibitor. Nature. 387:924–929. 1997. View Article : Google Scholar : PubMed/NCBI

10 

Croker BA, Kiu H and Nicholson SE: SOCS regulation of the JAK/STAT signalling pathway. Semin Cell Dev Biol. 19:414–422. 2008. View Article : Google Scholar : PubMed/NCBI

11 

Alexander WS: Suppressors of cytokine signalling (SOCS) in the immune system. Nat Rev Immunol. 2:410–416. 2002.PubMed/NCBI

12 

Linossi EM, Babon JJ, Hilton DJ and Nicholson SE: Suppression of cytokine signaling: the SOCS perspective. Cytokine Growth Factor Rev. 24:241–248. 2013. View Article : Google Scholar : PubMed/NCBI

13 

Kario E, Marmor MD, Adamsky K, Citri A, Amit I, Amariglio N, Rechavi G and Yarden Y: Suppressors of cytokine signaling 4 and 5 regulate epidermal growth factor receptor signaling. J Biol Chem. 280:7038–7048. 2005. View Article : Google Scholar

14 

Krebs DL, Uren RT, Metcalf D, Rakar S, Zhang JG, Starr R, De Souza DP, Hanzinikolas K, Eyles J, Connolly LM, et al: SOCS-6 binds to insulin receptor substrate 4, and mice lacking the SOCS-6 gene exhibit mild growth retardation. Mol Cell Biol. 22:4567–4578. 2002. View Article : Google Scholar : PubMed/NCBI

15 

Banks AS, Li J, McKeag L, Hribal ML, Kashiwada M, Accili D and Rothman PB: Deletion of SOCS7 leads to enhanced insulin action and enlarged islets of Langerhans. J Clin Invest. 115:2462–2471. 2005. View Article : Google Scholar : PubMed/NCBI

16 

Feng Y, Sanders AJ, Morgan LD, Harding KG and Jiang WG: Potential roles of suppressor of cytokine signaling in wound healing. Regen Med. 11:193–209. 2016. View Article : Google Scholar : PubMed/NCBI

17 

Yasukawa H, Ohishi M, Mori H, Murakami M, Chinen T, Aki D, Hanada T, Takeda K, Akira S, Hoshijima M, et al: IL-6 induces an anti-inflammatory response in the absence of SOCS3 in macrophages. Nat Immunol. 4:551–556. 2003. View Article : Google Scholar : PubMed/NCBI

18 

Bosanquet DC, Harding KG, Ruge F, Sanders AJ and Jiang WG: Expression of IL-24 and IL-24 receptors in human wound tissues and the biological implications of IL-24 on keratinocytes. Wound Repair Regen. 20:896–903. 2012. View Article : Google Scholar : PubMed/NCBI

19 

Parr C, Watkins G, Mansel RE and Jiang WG: The hepatocyte growth factor regulatory factors in human breast cancer. Clin Cancer Res. 10:202–211. 2004. View Article : Google Scholar : PubMed/NCBI

20 

Eriksson E: Gene transfer in wound healing. Adv Skin Wound Care. 13(Suppl 2): 20–22. 2000.PubMed/NCBI

21 

Branski LK, Pereira CT, Herndon DN and Jeschke MG: Gene therapy in wound healing: present status and future directions. Gene Ther. 14:1–10. 2007. View Article : Google Scholar

22 

Alexander WS, Starr R, Fenner JE, Scott CL, Handman E, Sprigg NS, Corbin JE, Cornish AL, Darwiche R, Owczarek CM, et al: SOCS1 is a critical inhibitor of interferon gamma signaling and prevents the potentially fatal neonatal actions of this cytokine. Cell. 98:597–608. 1999. View Article : Google Scholar : PubMed/NCBI

23 

Croker BA, Krebs DL, Zhang JG, Wormald S, Willson TA, Stanley EG, Robb L, Greenhalgh CJ, Förster I, Clausen BE, et al: SOCS3 negatively regulates IL-6 signaling in vivo. Nat Immunol. 4:540–545. 2003. View Article : Google Scholar : PubMed/NCBI

24 

Lang R, Pauleau AL, Parganas E, Takahashi Y, Mages J, Ihle JN, Rutschman R and Murray PJ: SOCS3 regulates the plasticity of gp130 signaling. Nat Immunol. 4:546–550. 2003. View Article : Google Scholar : PubMed/NCBI

25 

Kubo M, Hanada T and Yoshimura A: Suppressors of cytokine signaling and immunity. Nat Immunol. 4:1169–1176. 2003. View Article : Google Scholar : PubMed/NCBI

26 

Song MM and Shuai K: The suppressor of cytokine signaling (SOCS) 1 and SOCS3 but not SOCS2 proteins inhibit interferon-mediated antiviral and antiproliferative activities. J Biol Chem. 273:35056–35062. 1998. View Article : Google Scholar : PubMed/NCBI

27 

Seki Y, Hayashi K, Matsumoto A, Seki N, Tsukada J, Ransom J, Naka T, Kishimoto T, Yoshimura A and Kubo M: Expression of the suppressor of cytokine signaling-5 (SOCS5) negatively regulates IL-4-dependent STAT6 activation and Th2 differentiation. Proc Natl Acad Sci USA. 99:13003–13008. 2002. View Article : Google Scholar : PubMed/NCBI

28 

Pastar I, Stojadinovic O, Yin NC, Ramirez H, Nusbaum AG, Sawaya A, Patel SB, Khalid L, Isseroff RR and Tomic-Canic M: Epithelialization in wound healing: a comprehensive review. Adv Wound Care (New Rochelle). 3:445–464. 2014. View Article : Google Scholar

29 

Raja, Sivamani K, Garcia MS and Isseroff RR: Wound re-epithelialization: modulating keratinocyte migration in wound healing. Front Biosci. 12:2849–2868. 2007. View Article : Google Scholar : PubMed/NCBI

30 

Linke A, Goren I, Bösl MR, Pfeilschifter J and Frank S: The suppressor of cytokine signaling (SOCS)-3 determines keratinocyte proliferative and migratory potential during skin repair. J Invest Dermatol. 130:876–885. 2010. View Article : Google Scholar

31 

Linke A, Goren I, Bösl MR, Pfeilschifter J and Frank S: Epithelial overexpression of SOCS-3 in transgenic mice exacerbates wound inflammation in the presence of elevated TGF-beta1. J Invest Dermatol. 130:866–875. 2010. View Article : Google Scholar

Related Articles

Journal Cover

November 2016
Volume 38 Issue 5

Print ISSN: 1107-3756
Online ISSN:1791-244X

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Feng, Y., Sanders, A.J., Ruge, F., Morris, C., Harding, K.G., & Jiang, W.G. (2016). Expression of the SOCS family in human chronic wound tissues: Potential implications for SOCS in chronic wound healing. International Journal of Molecular Medicine, 38, 1349-1358. https://doi.org/10.3892/ijmm.2016.2733
MLA
Feng, Y., Sanders, A. J., Ruge, F., Morris, C., Harding, K. G., Jiang, W. G."Expression of the SOCS family in human chronic wound tissues: Potential implications for SOCS in chronic wound healing". International Journal of Molecular Medicine 38.5 (2016): 1349-1358.
Chicago
Feng, Y., Sanders, A. J., Ruge, F., Morris, C., Harding, K. G., Jiang, W. G."Expression of the SOCS family in human chronic wound tissues: Potential implications for SOCS in chronic wound healing". International Journal of Molecular Medicine 38, no. 5 (2016): 1349-1358. https://doi.org/10.3892/ijmm.2016.2733